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Chapter 10
Toward a Theory of Multilevel Evolution:
Long-Term Information Integration Shapes
the Mutational Landscape and Enhances
Evolvability

Paulien Hogeweg

Abstract Most of evolutionary theory has abstracted away from how information
is coded in the genome and how this information is transformed into traits on which
selection takes place. While in the earliest stages of biological evolution, in the
RNA world, the mapping from the genotype into function was largely predefined
by the physical–chemical properties of the evolving entities (RNA replicators, e.g.
from sequence to folded structure and catalytic sites), in present-day organisms,
the mapping itself is the result of evolution. I will review results of several in
silico evolutionary studies which examine the consequences of evolving the genetic
coding, and the ways this information is transformed, while adapting to prevailing
environments. Such multilevel evolution leads to long-term information integration.
Through genome, network, and dynamical structuring, the occurrence and/or effect
of random mutations becomes nonrandom, and facilitates rapid adaptation. This
is what does happen in the in silico experiments. Is it also what did happen in
biological evolution? I will discuss some data that suggest that it did. In any case,
these results provide us with novel search images to tackle the wealth of biological
data.

1 Introduction

Much of current research in biology is on the physical and biochemical basis of
information processing in cells. This information processing leads to the transfor-
mation of the inherited genotypic information to a living organism enough adapted
to its environment to survive.
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Most of these processes were unknown to Darwin, when he formulated the
theory of evolution by natural selection. Since Darwin’s time, and the development
of population genetics, the major paradigm of evolutionary biology has been to
largely ignore, or at least drastically simplify, the way information is coded and
transformed. Transporting the “small phenotypic variations” envisioned by Darwin,
to allele frequencies and nucleotide substitutions, a direct connection between the
level of mutations and the level of observation was largely maintained. Because of,
or despite of, this simplification, evolutionary theory could remain the cornerstone
of biological thinking through all the changes in understanding the underlying
processes in biological systems.

Recent advances in high-throughput techniques are producing a wealth of data
on the structure of genomes, regulatory networks, protein interaction networks,
all types of posttranscriptional and posttranslation modifications, etc., which all
together determine the genotype to phenotype mapping. On the basis of this wealth
of data, systems biology tries to understand the working of present-day organisms,
using a combination of data analysis, mathematical/computational modeling, and
experiments. Combining systems biology and evolutionary theory is fruitful in at
least three different ways. In the first place for analyzing the high-throughput data
and understanding the functioning of current life-forms, an evolutionary perspective
provides very powerful tools. For example, phylogenetic profiling of genes can be
used to predict the functioning of the genes in the same process/pathway when
they are (repeatedly) lost in the same lineages [33]. Also, multilevel evolutionary
modeling can help to zoom in to the relevant parameter values governing regulatory
interactions [62]. Secondly, the high-throughput data have shed exciting new light
on what did happen in long-term evolution and what does happen in short-term
evolution. For example phylogenetic reconstruction of fully sequenced genomes
have highlighted the unexpected importance of gene loss in adaptive evolution (e.g.,
[11, 23, 28]), and short-term evolutionary experiments have shown the frequent oc-
currence of large-scale mutations like gross chromosomal rearrangements (GCRs)
[15], and massive changes in transcription in very short-term adaptation [16]. In this
chapter, we explore a third meaning of the term evolutionary systems biology,
namely, how insights obtained by systems biology can enrich the theory of evolution
itself. In particular, we want to investigate the effects of complex, multilevel
genotype–phenotype mapping, and its evolution, on evolutionary dynamics. We
seek “generic patterns,” i.e., we seek a baseline for what we should expect given
our current knowledge or, to use the words of Koonin [39], universal laws governing
evolving systems. Koonin looks for such “universal laws” by examining the data. We
look for such generic patterns by studying models with many degrees of freedom
and observing, against the background of the implemented mutation selection
procedure, the emerging evolutionary patterns.

We use nonsupervised modeling (or nongoal-directed modeling) [24, 26]. This
concept can best be explained by analogy with nonsupervised pattern analysis
(or nonsupervised learning), as opposed to supervised pattern analysis. In non-
supervised pattern analysis (e.g., cluster analysis), a description is given, and
patterns that are not predefined are sought, whereas in supervised pattern analysis,
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a pattern (e.g., a classification) is given, and a description is sought which allows the
recognition of the classes. Likewise in nonsupervised modeling, the model does not
try to find an explanation for predefined phenomena, but instead structured objects,
possible transformation and interactions are defined, and the emerging patterns are
studied, focusing on those patterns which are not implemented or represented in the
model directly. Accordingly, in nonsupervised evolutionary modeling, we are not
interested in fitness attained, but in the structural side effects of attaining fitness.

The advantage of such an approach is that we can find, like in the pattern analysis
counterpart, truly unexpected patterns. Moreover, apparently unrelated phenomena
may appear as the side effects of the same basic processes. Another advantage is
that we can retain some of the complexity which is the hallmark of biological
systems, e.g., large genomes, and the complexity of the mapping of genome into
the phenotype.

In formulating these models, we adhere to the well-known dictum “models
should be as simple as possible, but not more so”.1 We think that abstracting from
the multilevel nature of biological systems constitutes a too drastic simplification.
Instead, we study the consequences of the multilevel nature in models which are as
simple as possible.

An apparent disadvantage is that we can only study particular examples. That is
in fact what Darwin did and what biologist still do in studying a limited number of
model organisms. I will argue that by studying well-chosen examples, we can attain
more generality than by molding our models into too much generality beforehand.

In line with this methodology, I will review in this chapter a number of specific
models we studied recently and later point out more general patterns in the results.
I will first review the by now classical results of the shape of fitness landscapes of
high-dimensional genotype spaces and a complex structural mapping of genotype
to fitness, as gleaned from studying RNA landscapes. Next, I will use a more
flexible genotype representation, adding successive layers in the mapping from the
genome to the structure and/or dynamics which determines fitness. We show that
the properties of the fixed landscapes still hold but are significantly enriched in
this more open-ended setting. Moreover, new patterns arise, which indicate that
surprising features gleaned from phylogenetic studies may be generic patterns of
multilevel evolution. Finally, adding an ecological level, I probe how new levels of
selection emerge and how these levels of selection may feedback on the genome,
generating a more complex genomic organization.

Together, these examples start to outline the contours of a theory of multilevel
evolution and suggest that the multilevel nature of biological systems allows
for long-term information integration. A striking consequence of this long-term
information integration is that mutation and selection are no longer independent: the

1This dictum is often attributed to Einstein (e.g., [42]), although he has never said it in this form.
Nevertheless, it remains a nice pointer to emphasize that on the one hand, models should not
incorporate unnecessary detail, but on the other hand should not overlook (and therewith obscure)
essential features of the process modeled.
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types of mutations which can/will happen in evolved systems, as well as their effect,
are shaped by past selection. In other words, “random mutations are not random” in
evolved systems.

2 High Dimensional Genotype Space with Nonlinear,
Redundant Mapping from Genotype to Phenotype

A hallmark of biological systems is the very large genotype space. An often used
visualization of evolutionary processes makes use of the concept fitness landscape,
first introduced by Sewell Wright [71]. However, our intuition about landscapes in
general and fitness landscapes in particular is strongly biased to lower dimensional
space. This bias can be highly misleading. In the beginning of the 1990s RNA
sequence to secondary structure mapping became a prototype to “peer” into a
realistic high-dimensional genotype–phenotype mapping [20,31,53]. It was chosen
because it was the only realistic genotype–phenotype mapping which can be readily
computed and because of the inherent interest of RNA as both information carrier
and catalyst and thereby its central role in early evolution. The genotype–phenotype
mapping can be brought in the landscape metaphor by defining a distance function
between secondary structures. Taking one secondary structure as reference, the
distance to that structure can be taken as the “height” associated with every
genotype. This distance can also be interpreted as fitness to study evolutionary
dynamics. An other useful representation of the RNA landscape is in terms of
connected graphs of identical structures mapped on the genotype space. Both these
images will be used intermingled in what follows, where we first describe features of
the RNA landscape and then the consequences of these features on the evolutionary
dynamics.

2.1 Shape of the RNA Landscape

By considering RNA sequences of fixed length, and allowing only base sub-
stitutions, the landscape metaphor can be applied. Fitness landscapes are often
characterized in terms of “ruggedness” (e.g., Kauffman’s NK landscapes [36]).
Ruggedness can be quantified in different ways, but it reflects correlation between
height and genotypic similarity and in low dimensional landscapes is associated with
number of local peaks. Because an evolutionary process can get stuck on such a local
peak, ruggedness is in general thought of as hindering evolutionary optimization. It
turns out that RNA landscapes combine smoothness and ruggedness in interesting
ways, as detailed in the following:

• Redundancy. The mapping is redundant as can be seen in that the sequences
consist of four different nucleotides, whereas the secondary structure can be
represented as a string with three symbols (the so-called bracket notation).
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Fig. 10.1 Innovations along the neutral path. (a) the number of novel structures seen along the
neutral path through mutations. No leveling off is observed (adapted from [30]). Right: an example
of the “meeting” of two different functions on the same sequence. The two different folds have no
single base pair in common, and their enzymatic function has been tested in vitro. Full functionality
is reached through one point mutation [52]. Upper panel: ligase fold. Lower panel HDV fold. The
foldings are represented by the mountain plot representation [25], extended to display pseudoknots.
The mountain plot representation facilitates comparison of structures by preserving the primary
sequence along the x axis from 5′ to 3′ end. Base pairs are on the same y value; horizontal stretches
represent single-stranded regions. Pseudoknots are superimposed and indicated by thin horizontal
lines and vertical boundaries: e.g., in the HDV fold, six bases of 3′ end fold back on the 5′ bulge
of nucleotides 24–30

Moreover, there are many additional constraints, e.g., “matching” brackets.
Nevertheless, a sample of a million random sequences of length 70 typically has
999,919 different structures (26 sequences do not fold) (see also [22]).

• Mutational neighborhood: Smoothness. Nevertheless, for length 70, ca 30% of
the 1 point mutants fold into the identical structure. For longer sequences, this
percentage saturates at 20%, whereas for length 30 sequences, it is about 50%.
Somewhat farther away, the number of identical structures decreases somewhat
less than exponential, but at distance 5, no more than 0.5% folds in the identical
structure [58].

• Mutational neighborhood: Ruggedness. On the other hand, a single point
mutation may also change the structure completely in the sense that not a
single Watson–Crick base pairing is conserved. Figure 10.1b shows a beautiful
experimentally verified example [52]. The sequences of two functionally differ-
ent ribozymes were changed “toward each other,” till finally, a sequence was
obtained which can fold in both structures, which are still functional. One point
mutation in each direction recovers full functionality. Note that in this case, it
is not a standard secondary structure, but it contains pseudoknots, which are
not considered in the computational experiments: nevertheless, the described
properties of mutational neutrality and sensitivity apparently hold for these more
complicated structures as well [52].

• Neutral networks. Identical structures with genotypic Hamming distance 1 or 2
percolate through sequence space [53], forming a so-called neutral network. The
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percolation means that a sequence can change entirely while still keeping the
same structure, and a certain structure is relatively close to any random initial
sequence.

• Intertwined networks. The neutral networks of different structures are intertwined
in the sense that typically somewhere on their neutral networks, any two
structures “meet,” i.e., are in each others, close mutational neighborhood. This
is shown in Fig. 10.1a: along a path on the neutral network, new structures occur
in the neighborhood in a constant rate [30].

In other words, the landscape is very rugged, as one step can bring us from
maximum to minimum height. Nevertheless, they are smooth as well: no local peaks
as there are always identical structures nearby (we can stay on one level).

2.2 Evolutionary Dynamics on RNA Landscapes

Evolutionary dynamics on RNA landscapes was studied by using distance to a target
structure as fitness criterion. The consequences of the shape of the landscape are
profound:

• Dynamics on neutral network. An evolving population will spend much time
diffusing on a neutral network. This diffusion is similar to the neutral evolution
on a flat landscape, as first described by Kimura [38], but the diffusion coefficient
scales with the connectivity of the neutral net [32]. The population can travel a
very long way over the neutral network in the time it will take to cross a fitness
barrier. For a neutrality corresponding to a random RNA of length 70, this would
amount to more than 109 neutral sequences explored in the time that a “ditch”
of width three mutations and a depth of just 1% can be crossed (for mutation
rate 10−6) [63]. In other words, the problem of local peaks in lower dimensional
spaces can be avoided by large detours in high-dimensional spaces. Interestingly,
the random walk on the neutral network “is going somewhere,” namely, to a
region of the neutral network that is smoother [31], i.e., has higher connectivity
than the average. To be more precise, the neutrality “seen” by the population after
prolonged residence on the neutral network converges to the largest eigenvalue of
the connectivity matrix [64]. For random sequences of length 70, this amounts to
an increase in fraction of neutral neighbors of ca 0.3 to larger than 0.4. In other
words, the robustness against mutations increases over evolutionary time. This
is well known from experimental evolutionary studies in that populations which
adapt to a certain environment initially have a very high mutational load (low
robustness) relative to the wild type [51].

• Neutral networks and adaptation/innovation. Adaptation from a random
sequence to an arbitrary structure shows periods of constant fitness, punctuated
by adaptive steps [19, 31]. During constant fitness, the population diffuses over
the neutral network. When it “meets” a structure closer to the target, it moves up
to this new neutral network. In other words, the properties described above about
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diffusion on the neutral network hold most of the time, i.e., the evolutionary
process is dominated by neutral drift. However, this neutral drift helps adaptation
because it prevents the population to get stuck on a local optimum, and the
population can explore a huge amount of the genotype space. Moreover, in doing
so, indeed more and more different structures are encountered (Fig. 10.1a).
As Zuckerkandl [72] emphasized in his Kimura memorial lecture entitled
“Neutral and nonneutral mutations: the creative mix,” this result reconciles
the neutral and adaptive theory of (molecular) evolution. A step from one neutral
network to another can involve a complete change in the structure as we have seen
above. The entanglement of the different networks ensures that the evolutionary
process is capable of drastic innovations.

• Evolution of robustness and evolvability. The amount of neutral network explored
depends not only on mutation rate but also on the connectivity of the network,
as mentioned above. Since the population moves during evolution toward parts
of the network that are more highly connected, the potential for exploration
is increased as well. This leads to larger population variability at any point
in time, as well as more movement over time. Accordingly, the chance of
“meeting” a new neutral network with higher fitness increases as well. In other
words, the chance of adaptation (and the potential of innovation) will increase
over evolutionary time. Intuitively, it has long been assumed that mutational
robustness and evolvability are incompatible with each other. These results show,
on the contrary, that both features, increased mutational robustness and increased
evolvability, emerge automatically from basic mutation selection processes in
fitness landscapes, as exemplified by the RNA landscapes.

2.3 “Just” RNA?

The above described features of evolutionary systems were derived from studying
one specific molecule, RNA. The observed features led Schuster to conclude that
RNA is an “ideal evolvable molecule” [53]. Unfortunately, they have often been
interpreted as features “just” for the RNA landscape—interesting as they are as
such. However, such an interpretation is much too narrow: RNA was used as a
paradigm system for some of the hallmarks of evolving biological systems [18,19],
exemplifying systems with large genomes, and highly nonlinear, and redundant
genotype–phenotype mapping. Indeed, in subsequent work, these features of land-
scape structure and evolutionary dynamics have been rediscovered in lattice-based
models of protein folding (e.g., [17, 48, 49]), the genotype–phenotype mapping
of metabolic networks (e.g., [34]), and regulatory networks (e.g. [5, 13, 14], and
see below). Indeed, the important insights on the reconciliation of neutralism and
selectionism [67] as well as the compatibility of robustness and evolvability [68]
and the origins of innovations [69] have recently been reemphasized by Andreas
Wagner [66, 69] on the basis of systematic studies on RNA and protein folding, as
well as the structure of regulatory networks and metabolic networks.
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The conclusion is that these features first derived from studying a specific
example (RNA) are indeed generic properties of biological evolution. Nevertheless,
they were previously overlooked in “more general” models of evolution because
of various simplifications (low dimensionality, linear mapping, random ruggedness,
etc.). This demonstrates that an in depth study of a particular example can lead to
more generalizable conclusions than models in which simplifications were made for
the purpose of being general. This endorses the nonsupervised modeling approach
that we advocate.

3 Evolutionary Structuring of Genomes and Regulomes
and Mutational Spaces

In the studies described above, only point mutations were considered.
Whole-genome sequencing studies have shown that genomes are much more
flexible than previously thought. Duplication and deletion of stretches of DNA
are rampant. Even in short-term evolutionary adaptation, GCR plays a major role.
The static picture of a genotype space, and of adaptive walks navigating this
space by point mutations, is clearly not all evolution is about. To explore the
consequences of such more dynamic genomes for evolutionary dynamics, we use
as basic representation a genome with genes and transcription factor binding sites
(TFBS). Mutations are at the genome level and include duplications and deletion
of stretches of DNA, representing genes, binding sites, or GCR, as well as point
mutations changing the specificity of genes and/or binding sites. These genomes
can code a regulatory network, and therewith gene expression. Because, given these
mutational operators, the genotype space is not predefined, such a system is, strictly
speaking, not amenable to analysis in terms of fitness landscapes or in terms of
standard dynamical systems.

They are however amenable to nonsupervised modeling: given the structure of
the genomes and genetic operators, we study the emerging phenomena. I will review
models with an increasing number of levels above the genome. First, I will discuss
a model without selection, where we study how the process of duplication and dele-
tion by itself structures the topology of regulatory networks. Next, we add selection,
and we study adaptation to changing environments in gene expression, and finally,
we add a layer of metabolism, evolving regulation to maintain homeostasis in a
variable environment. We will show that structuring of genomes and regulomes
during evolution leads to the evolution of evolvability in ways which go beyond
the increase of evolvability through increased neutrality discussed above. We will
compare the results to short-term in vitro experimental evolution and to longtime
phylogenetic patterns observed in fully sequenced genomes.
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Fig. 10.2 Network structuring through random mutations. (a) The transformation of a small toy
network by random duplication and deletion of genes and TFBS is shown: a random network is
transformed in a hierarchical structured network. The red nodes are part of the neutrally generated
feed forward motifs. (b) Connectivity preserving transformation: only by changing two links
simultaneously preservation of the connectivity profile can be guaranteed (adapted from [6])

3.1 From Random Mutations to Nonrandom Networks

Classical evolutionary theory assumes that random mutations lead to random
phenotypes unless guided by positive selection or constrained by negative selection.
This is indeed true to a large extent when we consider point mutations only. Given
that other genomic changes (mutational operators) play at least as large a role
as point mutations, a better visualization of the mutational part of the mutation
selection process is to see it as a stochastic dynamical system governed by the
mutational operators as the transition rules. The attractors of these dynamical
systems may have a very distinct, and counter intuitive, structure. The consequences
of random duplications and deletions of genes and of TFBS were studied by [6,65],
by simply implementing them together with point mutations which change the
specificity of the TFBS or the transcription factors.

There have been quite a few network models which showed that certain type of
network transformations leads to networks with certain features in common with
biological networks (e.g., [2,37,47]). The above described model differs from most
of these in that a clear separation of genotype and phenotype is maintained, where
mutations take place at the genome level and not directly at the network level. This
has important consequences, for example, a change in gene specification impacts on
many network connections. Although one can implement this at the network level,
such a rule should seem to be ad hoc, but it is a default choice given the underlying
genome structure.

Figure 10.2a shows the transformation of a toy random network when subjected
to these mutations. The resulting network is clearly much more hierarchically
organized than the initial network. Thus, we should conclude that random mutation
leads to a hierarchically structured network.
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Moreover, when duplication/deletion rates of binding sites are larger than those of
genes, and we initiate the process with a random network which corresponds in
terms of genome size, number of transcription factors, and average connectivity to
the yeast transcription regulation network, we see the following results:

• Like the coexpression network of yeast, the coexpression network resulting from
this mutational process has a small world, scale-free architecture [65].

• Like the in-degree of the yeast transcription network, the in-degree of the
networks generated by the mutational process follows a power law with exponent
2 [6].

• Like in the yeast network, there appears to be an overrepresentation of
feed-forward motifs (FFL) in the network [6]. Moreover, the higher-order
organization of these feed-forward loops is of the type called “multi-output”
by [35], like it is in yeast. In the toy model of Fig. 10.2a, the nodes belonging to
such feed-forward loops are colored red. They appear in the mutational process
when a hub gene is duplicated, and a connection between the two duplicates is
established. In the yeast network, we see this architecture, for example, in the
cell cycle genes.

Because of these multiple similarities of the model with the yeast regulatory
network, it is tempting to conclude that these features are the result of neutral
processes in yeast as well. However, the dichotomy between neutral and adaptive
processes is too naive. In the remainder of this chapter we demonstrate a tight
mutual dependence on mutation and selection: what is neutral can a side effect of
selection, and vice versa. The conclusion that random networks are quite special
does however hold.

The important observation here is that comparing network structures with
“random” networks is often very misleading. In testing the overrepresentation of
the FFL in the empirical networks, they were randomized keeping the degree profile
constant, i.e., the number of edges of the nodes was held constant [43]. Figure 10.2b
depicts a transformation step which preserves this profile. It is clear that such a
double step is unlikely both by mutation and by selection. Moreover, there is no
reason to suppose that the degree profile is selected for!

3.2 Evolution of Evolvability: Mutational Priming

Evolutionary experiments show that adaptation to new environments often is a
surprisingly fast process. High-throughput experiments on yeast adaptation to a
new environment have shown that over a short time span, adaptation occurs and
involves massive changes at both at the level of the gene expression [16] and at the
genome level [15]. Expression of about 10% of the genes changes, and duplication
and/or deletions of large stretches of the genome (GCR) are observed repeatedly,
although also single gene duplications can lead to the massive and “appropriate”
gene expression change. Similar changes in gene expression occur in independent
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evolutionary experiments, and several GCRs re-occur in several experiments. In this
section, we explore whether these features, unexpected as they were when first
observed, are in fact generic properties of evolved evolutionary systems.

Crombach and Hogeweg considered two questions separately: (1) can genomes
organize themselves so that few mutations can cause fast adaptation [8], and (2) can
regulomes organize themselves such that mutations can cause fast adaptation [9].

For both questions, we extend the basic model of genome evolution introduced
in the previous section with selection to a randomly fluctuating environment.
The selection criterion is simply the matching of available gene products to the
prevailing environment. No sensors of the environment are implemented such that
adaptation can occur by evolution only.

3.2.1 Evolution of Genome Organization

In this model, we focus on genome organization—and exclude regulatory
interactions. Adaptation to the environment requires that the copy number of the
genes matches the environment. Part of the genes are housekeeping genes that are
always needed in the same amounts, whereas the one or two sets of other genes
should be present in one or two copies dependent on the environment. Indeed,
gene duplications/deletion often act in early phases of adaptation through dosage
effects [21]. We use a diploid genome, and the set of mutational operators used
above is extended by mutations related to retrotransposon dynamics. Transposons
are duplicated including their long terminal repeats (LTR) and inserted at a random
position in the genome. Deletion of retroposons is always by single-stranded
annealing, which leaves a single LTR in the genome. LTRs can be deleted as well.
GCR happens through double-stranded breaks at LTRs, which are repaired by
randomly reattaching chromosome segments (for further details, see [8]).

Figure 10.3 demonstrates the dramatic increase in evolvability during evolution.
While early on the population cannot adapt to the prevailing environment before
the next environmental switch, late in evolution adaptation is quite fast, and the
population is well adapted most of the time. Thus, while early in evolution the
population cannot adapt through evolution, it can evolve evolutionary adaptation.
The fast evolution is due to the clustering of the housekeeping genes and of the
variable genes and flanking these groups by LTRs such that GCR occurs more
often in between these clusters. In other words, the random mutations are not
random anymore, but favor the duplication or deletion of coherent sets of either
housekeeping or variable genes and not a mixture. Such GCRs are either adaptive or
very maladaptive, and selection is therefore efficient. Interestingly, this mechanism
resembles the one observed in the evolutionary experiment mentioned above [15]
where many of the observed GCR in the adapted populations were associated with
LTRs.

However, an important difference between the model and the experiments is with
respect to the relation between gene expression and gene duplication or deletion.
In the simple model, these are assumed to be identical. In the experiments, however,
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Fig. 10.3 Evolution of evolvability through genome organization. Upper panels: fitness over time
(expressed as distance to target), while below, the switching of the environment is shown (Poisson
distribution with p = 10−3). Below blowups are shown of the adaptive process early in evolution
(left) and late in evolution (right). Early in evolution, the population is maladapted almost all of the
time, whereas late in evolution, it is well adapted most of the time (figure courtesy of A. Crombach)

this is not the case. Although gene expression of duplicated genes is more often
enhanced than repressed (and the reverse is true for deleted genes), some duplicated
genes are underexpressed and some deleted genes are overexpressed (see Fig. 10.4).
This is evidently because of transcription regulation. The power of evolution of
transcription regulation to make the effect of random mutation biased toward an
adaptive direction is discussed in the next section.

3.2.2 Evolution of Regulome Organization

Here we focus on gene expression. To this end, the dynamics of transcription
regulation was added to the model framework described above. Accordingly, the
edges of the transcription regulation networks have a weight (encoded in the binding
sites), and the genes have an activation threshold, all of which are subject to
evolution. The expression pattern of the genes (on–off) in the attractor of this
network should match the environment. The required state in the two different
environments differs in the expression of nine genes. For further details, see [9].

Like in the previous example, the adaptation rate to the alternative environment
is dramatically increased over evolutionary time (from more than 1,000 time step
to almost immediate adaption). Figure 10.5 shows that this increase in adaptation
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Fig. 10.4 Expression of duplicated and deleted genes in experimental evolution. We extracted the
genes which were duplicated (275 genes) and those which were deleted (77 genes) in experiment
1 in [15] and selected from these genes those which were significantly differentially expressed
relative to the ancestor, as observed in the corresponding experiment 1 reported in [16]. The two
dendrograms show the 76 duplicated and the 19 deleted differential expressed genes, respectively.
They are clustered according to their expression relative to the ancestor in the three replicate
evolutionary experiments, and the ancestor, reported in [16]. The upper part shows the expression
levels (red overexpressed, green underexpressed), the lower part the clustering. We see that the
expression patterns are similar in the replicate experiments. Moreover, we see that, although
duplicated genes are more often overexpressed, and deleted genes underexpressed, there are clear
exceptions, consistent over replicate experiments. Note that in the replicate experiments, other
genomic changes took place. The upper row of the heat plot is the expression of the ancestor

rate is accomplished through the effect of almost all types of mutations, as follows.
Both early in evolution and late in evolution, most mutations are neutral. Early
in evolution, the nonneutral mutations are evenly distributed between positive and
negative effects. In contrast, late in evolution, there is a clear overrepresentation
of mutations with a positive effect. Moreover, these mutations often have a large
positive effect: a relatively large proportion even shifts the gene expression from one
target to the other target (changing the expression of all nine differential expressed
genes). In particular, duplication and deletions of a single gene can cause such a full
switch quite often. These mutations change the attractor landscape in such a way that
the attractor with optimal gene expression in the one environment becomes a point in
the domain of attraction of the attractor corresponding to optimal gene expression
in the other environment. Thus, the adaptation to switching environment can be
accomplished immediately by repeatedly duplicating and deleting of the same gene.
We called such a gene an “evolutionary sensor.”

We conclude that the evolution of transcription network organization results in
nonrandom effect of random mutations. In the light of these results, the similar
effects of different mutations (whether large-scale mutations or not) observed in
the yeast experiments become less surprising, as does the weak correspondence
between gene duplication and overexpression (respectively, gene deletion and
under-expression) reported above.
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Fig. 10.5 Mutational priming. The effect of the various mutational operators is studied along the
line of descent. (a) Histograms of the effect of mutations around the ancestor lineage. The gray
shaded area early in evolution (t < 10−5), the blue line late in evolution (3.10−5 < t < 6.10−5).
X axis: positive (negative) approach toward opposite target, Y axis frequency. Most mutations are
and remain neutral; however, late in evolution, there is a clear bias to beneficial mutations (large
steps in the right direction). (b) Cumulative change over time: despite strong adaptation, neutral
mutations (thick line) strongly dominate the amount of change (adapted from [9])

3.3 Evolution of Evolvability: Beyond Increased Variability

When we compare these results with those obtained in fixed landscapes, we see that
all the results obtained there hold, but are also extended. Like in the fixed land-
scapes, there are neutral networks: neutral mutations in fact dominate (Fig. 10.5b).
Moreover, drastic changes in the phenotype require only single mutations, and
evolvability increases during evolution. However, the increase of evolvability is
essentially different from the increase in population variability due to an increase of
neutrality. In the examples discussed here, evolution actually increases (the effect
of) mutational changes “in the right direction.” This happens either at the level
of mutations themselves or through regulatory effects. In the first example, there
were more GCRs which increase/decrease the number of variable genes. In the
second example, the effect of almost all the implemented mutations is biased toward
the opposite target. Thus, through genome and regulome organization “random
mutations are not random,” but biased toward beneficial mutations. These results
appear to reflect the observations in short-term evolution in yeast mentioned above,
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where both mechanisms appear to be present. We should note however that yeast,
unlike these models, can adapt to prevailing conditions by sensing the environment
and thereby trigger changes of attractors of the gene regulatory networks. In the
yeast experiments, changes in expression patterns were measured after regulatory
adaptation. It was noted however [16] that the evolutionary adaptation partially
reflects regulatory adaptation: e.g., genes in respiratory pathways are overexpressed,
and genes in fermentation pathway are underexpressed relative to the ancestor
(which is allowed to regulatory adapt to the poor environment) in the strains
evolutionary adapted to the poor nutrient conditions. It seems likely that evolution
of such direct regulation helps the evolution of evolutionary adaptation: they work
via the same regulatory network. The reported computational experiments show
however that this help is not needed to shape regulatory networks so that only one
or a few mutations are needed for appropriate attractor switching and, moreover, so
that many different mutations can accomplish this switch.

An obvious and important objection could be that evolution is only toward targets
“which have been seen before” and therefore is not “real” evolution. This is true, but
one should realize that to a large extent, the experimental evolution of yeast reflects
this situation: it is likely that yeast has had to adapt to low nutrient concentrations
in its evolutionary history! Even if not exactly toward the experimental conditions,
a similar evolutionary response should at least increases fitness.

Nevertheless, the objection is relevant, and we will discuss evolution of
evolvability to novel circumstances in the next section, where we add new layers to
the transition between the genome and the phenotype.

3.4 Genome Size Dynamics and Evolvability of Virtual Cells

In the previous examples, we equated a gene-expression state with a fitness in a
certain environment. In the next example [10], we add more flexibility and more
layers as we define an evolving entity which actually has to cope with a changing
environment and can “choose” how to do it. Thus, we add an important new
level and therewith degrees of freedom of the evolutionary process. We evolve
(virtual) cells instead of just networks. These virtual cells should evolve regulatory
adaptation to maintain a stable internal state despite wide fluctuations in the external
environment.

The virtual cells [44] have anabolic and catabolic enzymes, transporters, and
consume one resource, which fluctuates widely (three orders of magnitude) in the
environment, and passively diffuses through the cell membrane. The cell copes with
this environment when it can keep the concentration of the resource (A) and of
an energy carrier (X) at a predefined value, i.e., if it can maintain homeostasis.
Catabolic enzymes convert resource into X, and X is used by anabolic enzymes
to convert resource to building blocks and by the transporters to transport resource
into the cell. The proteins are encoded in the genome and associated with TFBS.
Transcription factors regulate gene expression depending on their binding to ligands
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A and X. Mutations include duplication and deletion of stretches of the genome, as
well as changes in the binding constants etc. The genome is translated in a set of
ODE; the intracellular concentration of resource and energy carrier in the fixed point
of the intracellular dynamics determines fitness (homeostasis) (for further details,
see [10, 44]).

Previous work (e.g., [45]) has shown that, counter intuitively, sparse fitness
evaluation facilitates the evolution of regulation. In other words, when only a very
small subset of possible environments is encountered per generation, better adaptive
regulation evolves to all possible environments. Thus, regulation evolves by long-
term information integration better than by direct evaluation against all relevant
information. Accordingly, in our model, a cell encounters only 1–3 environments
in its lifetime—and its fitness is determined by how well it maintains homeostasis
in the encountered environments. However, to assess how well a cell performs, we
evaluate it on a set of standard environments, spanning the entire range of variation.

In line with our nonsupervised modeling strategy, we evolve these virtual
cells and observe what happens during evolution. Some striking features of the
evolutionary dynamics are summarized below:

• Early large expansion of the genome size. A “typical” pattern of genome size
dynamics is shown in Fig. 10.6a: early in evolution, there is a large expansion
of the size of the genome. This pattern is more extreme in the subset of runs
that do attain high fitness late in evolution (as the one shown indeed does) but
is seen in almost all evolutionary runs. This is shown in Table 10.1. Those
runs (ca 50%) which do attain high fitness late in evolutionary time have a
significantly larger genome expansion early on than those which do not attain
high fitness. The large size expansion is significantly correlated with a slight bias
for beneficial duplications. However, this bias is responsible for only a small part
of the expansion: most of the size increase is due to near neutral (or even harmful)
mutations. Accordingly, and interestingly, the fitness during the early stages of
evolution is not different between those runs which do have the large expansion
or those who have less expansion or between those which reach high fitness later
on and those which do not attain high fitness. We conclude that early genome
expansion facilitates evolution to high fitness much later in evolutionary time.

• Gene-loss during adaptation. After the initial expansion, genome size reduction
occurs while fitness is still increasing. While this is happening, duplications
are still more likely to be beneficial than deletions; nevertheless, genome size
decreases. An important driving force in gene loss is the deleterious effect of
mutations of nearly neutral genes.

• Shape of fitness landscape. Figure 10.6b shows that the degree of neutrality is
maintained, notwithstanding large fitness increase (as opposed to, e.g., [1, 63]).
Even more unexpected is the increase in the frequency of lethal mutations, while
the number of slightly deleterious mutations decrease. Nevertheless, this makes
“sense” in that strong selection is maintained.

• Increased evolvability to novel situations. Once high fitness is reached in
the prevailing circumstances with large fluctuation in resource availability,
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Fig. 10.6 Genome dynamics, evolved mutational landscape, and evolvability. (a) Typical evolu-
tionary dynamics over time. Red line fitness along line of decent, as measured in three standard
environments; gray filled area: genome size. We see early expansion of genome size, followed
by streamlining. (b) Changes in mutational landscape over time. Fitness decrease by mutations
in ancestral genomes, averaged over 5 time periods of 2,000 time steps (color, see inset). X-axis
percentage of fitness remaining after a mutation, ranging from 0% (lethal) to 100% (neutral). Y axis
frequency. The mutational landscape becomes more U-shaped. The frequency of neutral mutations
remains constant despite fitness increase, slightly deleterious mutations decrease, and lethal
mutations increase. This assures effective selection. (c, d) Fast adaptation to novel environments.
(c) original run: high fitness is reached at t = 3,800. (d) four examples of an environmental switch at
t = 3,800 of original run: almost immediate regain of fitness. Left panels genome size, right panels
fitness: black line maximum fitness in population, colored lines average fitness in population at
several resource concentrations (figure courtesy of T. Cuypers)

adaptation to entirely new circumstances is extremely fast. The new circum-
stances were simulated by altering the nonevolvable parameters of the model,
e.g., set point of the homeostasis, diffusion of resource through the membrane,
conversion ratios, and degradations rates. After these drastic changes, fitness
falls to very low values, but recovery to high fitness values takes less than
100 generations, Fig. 10.6c, d shows four typical examples where different
combinations of these changes were applied.

The pattern of expansion and streamlining is typical (or generic) in the following
sense: (1) it occurs in our default parameter setting in those runs which attain
high fitness (Table 10.1). (2) In other (mutational) parameter regimes, less often
high fitness evolves, and the pattern is seen less. A high fitness filter to recognize
generic patterns in evolution is appropriate as we are prone to encounter only those
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Table 10.1 Local landscapes and future fitness. The fitness of duplications and
deletions relative to the ancestral genomes. We extracted the genomes of the ances-
tral lineage (i.e. the lineage which gave rise to all genomes in later populations) of
74 evolutionary simulations. We subjected the ancestors to 50 duplication and 50
deletion mutations and determined the fitness as fraction of the ancestor’s fitness.
We compare the fitness effects in those runs which in the end reached high fitness,
with those which did not evolve high fitness over the first 200 time steps. A +
indicates significant more in the fit runs, − significant less in the fit runs, and = no
difference (parenthesis indicates almost significant). We observe that evolutionary
trajectories which reach high fitness after 10,000 time steps have significantly more
positive-effect duplication mutations in the first 100 and 200 steps than those which
do not reach high fitness. They also have larger genomes, but remarkably, they do
not have higher fitness yet in this period

Duplications Deletions

t = 1–100 t =101–200 ΔF t = 1–100 t = 101–200 ΔF
+ (+) >1.05 = = >1.05
(+) + 0.95–1.05 = + 0.95–1.05
− − <0.95 = − <0.95
Genome size Fitness
t =1–100 t = 101–200 t = 1–100 t = 101–200
+ + = =

organisms which indeed obtain high fitness. We have observed similar genome
expansion and streamlining needed for efficient adaptation in a very different
model in which LISP programs are evolved to approximate an algebraic function
[12]. Although further research is needed, we expect that this is truly a generic
evolutionary pattern, given enough degrees of freedom and the need for subtle
regulation.

Interestingly, this pattern of genome expansion and streamlining nicely reflects
one of the big surprises that emerged from the phylogenetic analysis of fully
sequenced genomes: unexpected large genomes in early ancestors and a major role
of gene loss in later evolving, often more complex, species. The pattern is beautifully
mapped in the reconstruction of Archean genome dynamics [11]. It occurs at all
different timescales. For example, a striking case is the large number of HOX genes
in amphioxus, and their loss in vertebrates [28]. The pattern also occurs within one
genus: gene loss dominates gene gain in all terminal branches of the Drosophila
radiation [23].

It turns out that also the evolved U-shaped fitness landscape, surprising as it
was to us, actually is reflected in the fitness landscape found in yeast relatively to
naturally occurring mutations [70]. In the case of yeast, the pattern is even sharper
than the one evolved in our virtual cells over relatively short times: only close to
neutral and close to lethal mutations were observed in the experiments.

This virtual cell example again highlights the importance of long-term effects
in evolution, the shaping of the mutational landscape, as well as the evolution of
evolvability. The latter being to entirely new circumstances in this case.
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4 Evolution Toward Multilevel Evolution

In the previous section, we studied the impact of multilevel evolution by
implementing successively more complex dynamics between the level of genetic
encoding and the level on which selection takes place. In other words, we bypassed
the question how/why such an complex mapping did evolve. Earlier work has
shown that spatial patterns which automatically emerge through local interactions,
constitute a new level of selection [4, 27, 50], and indeed, the emerging waves can
themselves be considered as “Darwinian entities” [57] evolving by, e.g., maximizing
birthrate. At the level of replicators, this may lead to very counterintuitive
evolutionary results, e.g., positive selection for early death (without any trade-
offs implemented) [3]. In this section, we examine how such an emerging higher
level selection feeds back on the structure of the genomes and the mapping of
genomes to function.

4.1 Mutation Rates, Mutational Landscapes and the Structure
of Evolved Sequences, Populations and Ecosystems

To this end, we return to the RNA world, where the genotype is the RNA sequence
and the function is determined by its secondary structure [56]. We again allow only
for point mutations. However, we now add the potential for interaction between
molecules. A particular secondary structure defines replicase function. If the single-
stranded 5′ end of a replicase sequence binds to the single-stranded 3′ end of an
other RNA sequence by complementary base pairing, the latter is replicated (with
mutations). Note that in this model, only the structure of genomes (RNA) and
reactions are defined. An interaction network between replicators may (of may
not) emerge through evolved sequence complementarity. The RNA sequences
are embedded in space. In one Monte Carlo simulation step, a sequence has a
probability to diffuse, to decay, or to interact with other sequences. Complex
formation between two adjacent sequences takes place by complementary base
pairing between 5′ and 3′ dangling ends of the molecules; the complex can fall
apart, and the complex of a replicase and another sequence (template) can lead to
replication of the template, when empty space is available in the neighborhood.
The replication produces the complementary strand of the template. The embedding
in space allows for spatial pattern formation, depending on the interaction topology
which may evolve. Without spatial pattern formation, the system would go extinct
by exploitation by so-called parasites, i.e., sequences that bind more strongly than
the replicases to the 5′ end of replicases, but are not replicases as they do not fold
in the predefined replicase structure. This model truly represents the nonsupervised
modeling approach, maximizing evolutionary degrees of freedom and minimizing a
priori specification. For further details, see [56].
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Here I highlight the results which show how the coding of the sequences, and
the structure of the population and ecosystem, evolves under different evolutionary
regimes.

• The shape of the quasi-species at high mutation rates. At very high mutation
rates (μ = 0.015 per base), only one quasispecies survives. In order to obtain a
viable system with very high mutation rates, the coding of the replicase has to
be evolved by slowly increasing mutation rates: random initial replicases (i.e., a
sequence which folds in the catalytic structure and whose plus and its minus
string can be replicated) are over the error threshold and die out. However,
through evolution, sequences that tolerate high mutations rates emerge. The
survival strategy of the evolved quasispecies is NOT to maximize neutrality
(and thereby increase the phenotypic error threshold) as would be the case
in noninteracting RNA (and other) landscapes [58, 64], as discussed above.
On the contrary, only 8% of the distance 1 mutations of the master sequence
is a viable replicase, and apart from one possible neutral mutation, they are
all less fit. Accordingly, the variability in the quasispecies is very low (see
“C catalyst” in Fig. 10.7). This strategy evolves because it protects the quasi-
species against mutations in two ways: none of its nearby mutants is a “parasite,”
i.e., a noncatalytic sequence of which both strands can be replicated, and most
are “junk” molecules. These junk molecules are not “viable” as they cannot
be replicated both as + and as − strand. However, they dilute the population
and prevent parasites, which could emerge as rare (distant) mutants, to receive
enough catalysis to survive. Thus, although opposite to what we saw before, also
here coding structure evolves mutational robustness according to the prevailing
circumstances.

• Niche creation and alternative coding structures at lower mutation rates. On
lowering the mutation rate, speciation into several lineages occurs. The lineages
are named according to the most prevalent bases in the 5′ or 3′ dangling ends,
as detailed in Fig. 10.7. First, a strong parasite lineage evolves (“G parasite”).
The parasites are not part of the catalyst quasispecies but form a separate lineage
and optimize their primary and secondary structure to maximize the amount of
catalysis they get in both strands. It locally outcompetes the C catalyst, and a
characteristic wave structure emerges. At still lower mutation rates, a niche is
created for a second catalytic species (A catalyst). The second catalyst “chooses”
a very different coding strategy: it does maximize neutrality. It can afford to do
so because of the lower mutation rates. The high neutrality increases population
variability. This is an alternative strategy against parasitism [27] but likewise
can harm self-replication. At still lower mutation rates, the latter catalyst,
having decreased population variability, is parasitized. The resulting four-species
ecosystem is depicted in Fig. 10.7. The spatial structuring stabilizes this strongly
parasitized system and creates the niches which allow for (or demand) alternative
coding strategies.
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Fig. 10.7 Evolved structure of populations, individuals, and ecosystems. The population structure
is shown in the left panel: four lineages (species) have evolved and stably coexist. The lineages are
called C catalyst (cyan), A catalyst (magenta), U parasite (green), and G parasite (red), respectively
on the basis of the prevalence of the bases at the 5′ end for catalysts and the 3′ end for parasites. The
genotype and phenotype of evolved lineages is shown in the upper right picture as a sequence logo
(using standard coloring for the bases) of the genotype and the bracket notation for the phenotype,
where highly conserved base pairings are colored red. The spatial structure of the ecosystem is
shown in the lower right picture. The coloring corresponds to coloring in the phylogenetic tree.
The G parasite outcompetes the C catalyst, creating a niche for the A catalyst and its parasite (U
parasite). Note the difference in within lineage variably (adapted from [56])

• Mutation rates and ecosystem stabilization. At even lower mutation rates, no
stable eco-evolutionary system is maintained. Instead, a red queen dynamics is
seen in which evolved parasites outcompete the resident catalyst, but an escape
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Fig. 10.8 Evolution of DNA in the RNA world. Left: schematic view of the model. (a) Self-
replication: RNA-dependent RNA polymerase (in RNA form) (RdRPRNA) replicates itself. This
represents the RNA world, and the model is initialized as such. (b) transcription: the RNA form
of DNA-dependent RNA polymerase (DdRPRNA) transcribes both itself and DNA-dependent
DNA polymerase (DdRDPRNA) from the corresponding DNA, whereas DNA-dependent DNA
polymerase (DdDPRNA) replicates DNA of both polymerases. Note that other interaction schemes
may evolve, e.g., reverse transcription. Right: evolutionary outcome of the surface system (left) and
the protocell system (right). Snapshot of the space with blue RNA polymerase (Rp) molecules,
green DNA polymerase (Dp), red parasites. DNA and RNA forms are not distinguished. Inlay:
2D histograms of the recognition of DNA and RNA by Rp and Dp. Both systems evolve to a
combination of the self-replication and the transcription system, whereas reversed transcription
is avoided since Dp recognizes only DNA and not RNA. In the surface system, Rp speciates
in an RNA recognizing and a DNA recognizing lineage, whereas in the protocell system, a
polyfunctional Rp evolves (this is indicated by the gray line in the scheme) (Adapted from [59])

mutant of the catalyst, which is less severely parasitized, takes over subsequently
and so on. The stabilization of ecosystem interaction by maintaining high
population diversity (by high mutation rates and or high neutrality) is an
interesting feature, also seen in more simple models [61], emphasizing the
interlocking timescales of ecological and evolutionary processes.

This example highlights the mutual dependence on multiple levels of organi-
zation. Not only do the lower levels determine the higher levels, but the higher
levels feed also back on the structure of the lower levels. This mutual dependence
is relative not only to the structure of the different levels of organization (genotype,
phenotype, and ecosystem) but also on the shape of the mutational landscape around
the selected master sequences. Currently, we are investigating how these mutual
dependencies can lead to evolution of more complex, i.e., larger, genomes despite
high mutation rates in this “structure-based rather than interaction-based” model.

Here we will next study the evolution of more complex genomes by mutual
interactions across multiple levels and multiple timescales in a more conventional
structured model of the RNA world, which targets one of the major transition in
evolution, the take-over of DNA as information carrier.
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4.2 The Evolution of DNA in the RNA World

One of the major transitions in evolution was the evolution of DNA in the RNA
world. Whereas in the RNA world RNA acts both as catalyst and information
carrier, at a certain point, a noncatalytic counterpart of RNA (DNA) evolved
which carries the inherited information but is catalytically inactive.2 The replication
cycle becomes longer, involving both replication and transcription. Such a longer
cycle should be slower and therefore should be disadvantageous. So, why did a
transcription like system evolve? There may be chemical reasons, but here we
study whether such evolution can be explained on the basis of eco-evolutionary
dynamics alone. One hypothesis which has been put forward is that DNA is a
more stable molecule, and the longevity might be advantageous. Here we show that
this longevity is not needed to explain its evolution: the division of labor between
information storage and using the information for catalysis, by itself, can explain its
evolution.

We model a system of RNA and DNA polymerases, which can each exist in
DNA or in RNA form [59]; see Fig. 10.8a, b. Each of them can recognize DNA
and RNA. The strength of recognition is an evolvable parameter. Recognition of
the template leads to complex formation and subsequently to the copying of the
template into RNA or DNA dependent on the type of polymerase.3 Notice that this
setup allows for both transcription and for reverse transcription to evolve, as well as
any combination of these.

We study this system in two modes, both of which include a level of selection
above that of the polymerases. In the surface system, the molecules are embedded in
space, and the spatial patterns which emerge constitute this higher level of selection
as in the previous example. In the protocell system, the molecules are enclosed in
compartments, which, dependent on the number of molecules inside, grow/shrink
and can divide and die. Like in the previous case without the higher level of selection
the system would quickly die because “giving catalysis” is a strong “altruistic” trait
as it takes time and replicates the competing molecule instead of being replicated
itself.

We first evolve the RNA world system, including a parasitic RNA which
replicates 10% faster than the polymerase. This parasite goes quickly extinct in
the protocell system, and it survives in the surface system, forming the charac-
teristic wave patterns of such systems. We then introduce rare mutations of RNA
polymerase to DNA polymerase. The DNA polymerase mutant can invade in both
systems. After a long and interesting transient, the evolutionary dynamics stabilizes
to a state shown in Fig. 10.8. In both systems, transcription-like interaction as well as

2DNA can, in fact, be a catalyst as well, but in the model, we define it as noncatalytic as it is in
present-day systems.
3In this model, we do not distinguish + strands and − strands.
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RNA replication occurs. In the surface system, the RNA polymerases have speciated
into two types, one recognizing RNA and one recognizing DNA, while in the
protocell system (where only a limited number of molecules occur in a protocell),
a polyfunctional RNA polymerase evolves which recognizes both RNA and DNA
with high affinity. In other words, a transcription-like system evolves coexisting
with RNA replication. Ancestor tracing shows, however, that long-term inheritance
is mainly through DNA and that this hybrid system does incorporate division of
labor between information carrier and catalysts.

This division of labor evolves because it accomplishes what we called “evolu-
tionary stabilization.” This concept is most clear-cut seen in the protocell system,
but also operates in the surface system. When a protocell happens to lose DNA by
stochastic fluctuations, the RNA only cells replicate indeed faster because of the
shorter replication cycle and expand in the population. However, at high enough
mutation rates, before they take over the entire population, the recognition affinity
evolves to lower values, which reduces replication rate, and the DNA containing
cells take over the population again. This evolutionary deterioration of the RNA
replicator system is because of the dual role of RNA as template and catalyst: by
reducing recognition strength, RNA spends less time being a catalyst and more
time being replicated. Although the higher level of selection prevents this selection
pressure to lead to extinction, the altruistic catalytic behavior is minimized. Because
DNA does not act as a catalyst, this selection pressure does not play a significant
role in the transcription-like system, and catalysis is maintained at high values.
This is the case as long as inheritance via DNA dominates. Accordingly, reverse
transcription should be avoided, as it indeed is in the evolved systems: DNA
polymerase only recognizes DNA (Fig. 10.8c).

This example shows clearly the mutual feedback between multiple levels of
selection. The levels of selection “above” the replicators (waves or compartment)
enable the evolution of a multilevel genotype–phenotype mapping, here the evolu-
tion of the division of labor between information storage and information usage.

Moreover, a very profound conclusion is that the major evolutionary transition
from the RNA world to a DNA and RNA world could have occurred because of the
evolutionary properties of this more complex replication system, rather than because
of direct functional properties.

5 Discussion and Conclusions

We have studied evolution in a number of example systems which aim to be simple
enough for thorough analysis, but at the same time maximize the flexibility of the
evolutionary process. In these models, the structure of the genomes, as well as
the transformation of the genomes to the properties on which selection operates,
can evolve. This happens alongside the direct evolutionary adaption to the changing
environments. A recurrent theme in all examples discussed above is that, given this
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flexibility, long-term information integration occurs which shapes both short-term
and long-term evolutionary dynamics. We have seen this phenomenon in different
guises in the various examples.

In the network evolution models in a fluctuating environment, we have seen
an effect we call mutational priming: mutations and their effect are biased toward
those with a large (beneficial) effect. It has often been argued that large changes are
likely to be deleterious, as the mutant is prone to fall in the abyss. This is indeed
also true in the RNA landscapes, where the deleterious effects of mutations are
approximately additive [58]. However, as we have seen in models which are more
flexible in shaping the mutations which do occur and/or the effect of these mutations
through genotype–phenotype mapping, the effect of such large effect mutations
may be biased to beneficial mutations. Nonbeneficial mutations become indeed
more strongly deleterious and can therefore be easily weeded out by the selection
process. In these examples, we only considered clonal reproduction. An often made
argument for the necessity of allowing only for small changes comes from sexual
reproduction, as mutants which are very different would be less likely to mate or to
be able to produce viable offspring. A model using a similar genetic encoding as the
one discussed here, but with obligate sexual reproduction [60], shows, however,
similar long-term effects that shape the structure of the genomes, in this case
such that recombination between differently adapted individuals produces offspring
which is still well adapted to some environment.

The virtual cell model highlights long-term evolutionary effects by showing
that a chance slight, but significant, bias to positive effects of gene duplications
leads to huge increases in genome size. Many neutral and (slightly) deleterious
genes hitchhike along with this genome increase, and accordingly, the genome
increase does not lead to higher fitness at the time. However, the increase in
genome size correlates with high fitness late in evolution, apparently due to the
larger degrees of freedom in larger genomes. The increase of evolvability in these
evolved large genomes was shown to make adaptation to novel conditions, never
seen before by the evolving population, extremely fast. This beneficial effect of large
genomes runs counter to common wisdom which assumes that larger search spaces
make adaptation harder. This intuition was already countered in the case of RNA
landscapes because of percolating, and intertwining, neutral networks of various
functional structures. The virtual cell example suggests that at least looking back
from those entities which did obtain high fitness, large genomes with a structure
amenable to easy evolution have been part of their evolutionary history. On the
other hand, later in evolution, large increases in genome size can be a side effect
of the evolution of high neutrality, not only in the sense of evolving neutral genes
but also in evolving a decrease in the deleterious effect of mutations of these neutral
genes. This happens most effectively for regimes with effective selection (e.g., large
populations). We see here an interesting duality with respect to the relation between
population size and genome increase due to nearly neutral mutations. On the one
hand, small population size decreases the selection, thus effectively rendering more
mutations neutral, whereas large population size selects more effectively (faster) for
a larger degree of neutrality, both primarily and secondarily (compare [40, 41]).
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In the RNA replicase model, we saw that at high mutation rates, replicases
evolve for which many mutations lead to loss of function, i.e., to low neutrality.
This is in apparent contradiction between the classical results in RNA landscapes in
which evolution of high neutrality occurs at high enough mutation rates/population
sizes [64], a result which is mimicked in protein folding, regulatory and metabolic
models. However, both observations fit perfectly in the more general point high-
lighted in the series of experiments reported here: the mutations which do occur
and their effects evolve dependent on the evolutionary regime to which they are
subjected. As we have seen, the low neutrality leads in this case to robustness by
preventing parasite invasion, by minimizing parasite creation by mutations, as well
as by decreasing the catalysis parasites can receive because of the many noncatalytic
molecules which do arise through mutation from the replicase. We conclude that,
like in the network models, the spectrum of mutational effects is optimized relative
to the prevailing environmental challenges: here the evolved quasispecies protects
itself against parasites. Moreover, unlike in the network models, the environmental
challenges are not externally imposed, but arise from the evolving replicators
themselves.

Finally, in the example of the evolution of DNA in the RNA world, one of the
major transitions in evolution, we have seen that the more complex transcription-
like system evolves not because of its superior functional properties but because of
its evolutionary properties. When the information flow is from DNA to RNA, and
not (or rarely) in the reverse direction (compare Crick’s “central dogma” [7]), the
evolutionary pressure to minimize catalytic strength is alleviated. While the higher
level of selection on waves or compartments is necessary to prevent extinction of
the simple replicator system, strength of catalyzes is nevertheless minimized. The
more complex and hence slower transcription-like system prevents this evolutionary
deterioration and is therefore maintained.

All these cases highlight long-term information integration during evolution.
Long-term processes are often banned from evolutionary inferences. For example,
Maynard Smith and Szathmary explicitly state in their introduction [55] “the transi-
tions must be explained in terms of their immediate selective advantages . . . .” Indeed
without such a constraint, explanations may be generated too easily. However,
evolution itself is not bound by this constraint, nor are constructive models of
evolution. We have seen that long-term information integration does occur as a
result of basic mutation and selection processes in the simple models studied. This
is because not only adaptation to external environments occurs during evolution, but
also the coding of information in the genome, as well as the transformation of the
genome into selectable traits, is shaped by evolution.

One of the consequences of the shaping of the mutational landscape through
evolution is that adaptive and neutral evolution is even more interwoven than was
inferred from the “neutrality aids adaptation” observed first in RNA landscapes.
Indeed, the types of mutations which do occur are the product of adaptation. Thus,
the dynamics of neutral evolution against the background of evolved genomes is,
in fact, the product of long-term evolution in which adaptive and neutral processes
are intertwined. In other words, due to mutation and selection, mutation as well as
selection evolves.



10 Multilevel Evolution 221

These features are a consequence of random mutation and selection in multilevel
systems. We therefore should expect them to shape biological evolution. The data
discussed on experimental evolution of yeast as well as broad evolutionary patterns
gleaned from phylogenetic studies of fully sequenced genomes indeed suggest that
they did shape biological evolution (see also, e.g., [29, 46, 54]). Nevertheless, a
major challenge is now to find more signatures of (the consequences of) long-
term information integration in the data. We strongly expect to find such signatures.
If they are not found, the challenge would be to unravel the mechanisms which
prevented their occurrence.
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