

Conservation of Gene Orientation in Fungi

Philip R. Kensche, Martin Oti, Bas E. Dutilh, Martijn A. Huynen

Center for Molecular and Biomolecular Informatics / Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center. PO Box 9101, 6500 HB, Nijmegen, The Netherlands.

email: pkensche@cmbi.ru.nl

Introduction

We quantified the conservation of divergent $(\leftarrow \rightarrow)$, co-oriented $(\rightarrow \rightarrow)$ and convergent $(\rightarrow \leftarrow)$ genes in the genomes of 19 asco- and basidiomyceteous fungi.

Conservation based on Dollo parsimony

Divergently transcribed gene pairs are on average 61 million years longer conserved than co-oriented gene pairs, leading to a 3-fold higher probability of conservation of divergent gene orientation at a score cutoff of 1000 million years.

Divergent gene pairs are more conserved ...

... although they are more distant!

For divergent gene pairs the conservation correlates with co-expression ...

... independent of spacer length ...

... and they are functionally related!

Shared TFs suggest bidirectional promoters between conserved divergent gene pairs

... even when controlling for spacer length (≤ 500 My: p<2.4×10⁻⁴; > 500 My: p=0.53; one-sided U tests)

Acknowledgements

This work was funded by the Netherlands Bioinformatics Centre (NBIC), which is supported by the Netherlands Genomics Initiative (NGI) and by the European Union's Sixth Framework Programme EPISTEM (CT-2005-019067).