
Cash2.1 User Manual
Cellular Automata in Simulated Hardware 2.1

Bram van Dijk
Nobuto Takeuchi

Theoretical Biology, Utrecht University1

October 11, 2018

Cash2.1 Chaotic wave patterns in mutualists and cheaters

1The distribution of the program and the manual is allowed but the distribution of modified copies is not allowed.
Suggestions and corrections are welcome. This software uses CASH (RJ de Boer & AD Staritsky) and Mersenne
Twister (M Matsumoto & T Nishimura).

2

Contents

1 Introduction 5

2 Installation 7
2.1 Installing on Linux . 8
2.2 Installing on Windows . 9
2.3 Installing on Mac OSX . 12

3 Downloading and testing Cash2.1 13
3.1 Using the command line . 13
3.2 Downloading, installing, and first use of Cash2.1 . 15

4 Programming in C and Cash2.1 17
4.1 What is programming? . 17
4.2 First look at an example source code . 18
4.3 Details of the source code . 20

4.3.1 Header . 20
4.3.2 Initial() function . 21
4.3.3 InitialPlane() function . 22
4.3.4 NextState() function . 23
4.3.5 Update() function . 25

5 Advanced useage functions 27
5.1 Reference Manual . 27

5.1.1 Functions that must be defined by the user 28
5.1.2 On TYPE2 . 29

3

4 CONTENTS

5.1.3 Available functions . 30
5.2 If-else . 41
5.3 For-loop . 42
5.4 Pseudo random number generator . 43

6 FAQ 45
6.1 Questions on installing Cash2.1 . 45
6.2 Questions on programming in Cash2.1 . 45

Chapter 1

Introduction

Cash2.1 is an easy-to-use library to make a program simulating Cellular Automata (CA’s), and it
was created for the use in the course Bioinformatic Processes given by Paulien Hogeweg at Utrecht
University. This document discusses how to setup/install Cash2.1, followed by a basic introduction
to the command line, programming in C, and using Cash2.1. If you know what you are doing, and
already have Cash2.1 setup, you can jump right in and make your own CAs by checking out all the
advanced functions found in Chapter 5.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Installation

In principle, Cash2.1 is a program made for Linux. Installing on a Linux system is easiest, but it
is also possible to install them on Windows or Mac OS. The general installation process is the same
for all systems:

• Installing dependencies (libraries used by Cash2.1)

• Installing software for display and graphing

• Installing and testing Cash2.1

7

8 CHAPTER 2. INSTALLATION

2.1 Installing on Linux

Installing the required dependencies for Cash2.1 can be done manually (see blue box below, only
for cool kids) or by using the script provided on our course website:

• wget http://theory.bio.uu.nl/BINF/software/Cash2.1/cash dependencies.sh

• sudo ./cash dependencies.sh

• (enter your password)

For geeks that want to do it themselves, here’s what the script does:

• apt-get update

• apt-get install unzip

• apt-get install build-essential

• apt-get grace

• apt-get install x11-apps (just for testing)

• apt-get libpng-dev

• apt-get zlib1g-dev

• apt-get libx11-dev

• echo DISPLAY=localhost:0.0 >> ∼/.bashrc

• source ∼/.bashrc

Next, continue to Chapter 3 to start installing and using Cash2.1.

2.2. INSTALLING ON WINDOWS 9

2.2 Installing on Windows

Since Windows 10, the Microsoft app store has ’Ubuntu for Windows’ freely available, which is
a small, yet fully functional, Linux Ubuntu distribution run on windows. By installing this, and
installing a program to manage your display (displaying graphs and the CA grid), we can use Cash2.1
without any limitations.

Figure 2.1: Enable Windows Subsystem for
Linux

Step 1/5: Preparing Windows
10 developer mode

• Go to Control Panel→ Updates and Security→ For
developers, and enable the ’Developer mode’

• Go to Control Panel → Program’s and Features →
Turn Window features on or off. Enable ’Windows
Subsystem for Linux’ (see Figure ??)

• (Restart Windows)

Step 2/5: Installing Ubuntu for Windows 10

• Install Ubuntu for Windows 10, available in the Microsoft app store.

• Start Ubuntu for Windows. Continue through the installation. (setting up a username and
password, etc.).

• By default, your Windows documents can be accessed via /mnt/c/Users/<username>.
(note: it is adviced to download and install Cash2.1 here, since you can then easily edit the
code via your preferred Windows text editor, without getting permission problems)

10 CHAPTER 2. INSTALLATION

Step 3/5: Installing an X server for Windows

In order to run graphical applications such as Cash2.1 via your newly installed Ubuntu, you need an
X server. There’s a small one called VcXsrv available here sourceforge.net/projects/vcxsrv/

NOTE! This program needs to run while using Ubuntu to get a display. It’s in your Start Menu,
and called XLaunch. If you’re lazy like me, you can add it to your windows start-up applications:

• Right click on XLaunch in the start-up menu

• Select More → Open file location

• Copy the VcXsrv shortcut file

• Paste the shortcut in %appdata%/Microsoft/Windows/Start Menu/Programs/Startup

• (An X icon should appear in your system tray whenever you start Windows)

Step 4/5: Installing required tools on Ubuntu for Windows

For Cash2.1 to work, some other packages need to be installed (see blue box below). For easily
doing this, run the script on our website. Type the following commands into your Ubuntu terminal:

• wget http://theory.bio.uu.nl/BINF/software/Cash2.1/cash dependencies.sh

• sudo ./cash dependencies.sh

• (enter your password)

• Test your display by typing xeyes. Do you a window with eyes?

Step 5/5: Installing and testing Cash2.1

This is explained in Chapter 3.

2.2. INSTALLING ON WINDOWS 11

For geeks that want to do it themselves, here’s what the script does:

• apt-get update

• apt-get install unzip

• apt-get install build-essential

• apt-get grace

• apt-get install x11-apps (just for testing)

• apt-get libpng-dev

• apt-get zlib1g-dev

• apt-get libx11-dev

• echo DISPLAY=localhost:0.0 >> ∼/.bashrc

• source ∼/.bashrc

12 CHAPTER 2. INSTALLATION

2.3 Installing on Mac OSX

Since Mac OS is a also a UNIX system, using Cash2.1 is possible, but it requires some different
steps. We need to install a program to manage your display (displaying graphs and the CA grid),
like Xquartz. If you are lazy, see if our setup script gets you through it (we’ve tested the script, but
only on a few systems). If it didnt work, follow the instructions in the blue box below.

Here’s what the script is supposed to do on your Mac OS system. It installes xcode and homebrew, and then
uses homebrew to install xquartz, libpng and grace:

• xcode-select –install

• ruby -e ”$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)”

• brew cask install xquartz

• brew install libpng

• brew install grace

Figure 2.2: Dependendies required for Cash2.1

Next, continue to Chapter 3 to start using Cash2.1.

Chapter 3

Downloading and testing Cash2.1

From here on out, we will start using the command line. I will briefly explain some of the basics for
beginners here. If you know how the command line works, you can skip to section 3.2.

3.1 Using the command line

Using Cash2.1, you will mostly work in a terminal. You can find the terminal by searching for
‘terminal’ in the start menu of either Linux, Mac OS, or Windows. In the terminal, you can type
commands. In this section, some of the most useful commands will be explained.

Assume our directories are structured in the following way:

Imagine that we start in root/een/two.

cd ..:
This command will take us up one step in the directory
structure. So, we will end up in root/een.

ls:
This command will show us the content of the di-
rectory we are currently in, root/een. It will show
us at least the three directories: one, two and

13

14 CHAPTER 3. DOWNLOADING AND TESTING CASH2.1

three.

cd three:
This command takes us to the subdirectory three. Of course this only works when a directory with
the name you type actually exists.
We type cd .. again to get back into root/een.

mkdir four:
By using this command, we create a new subdirectory in the directory we are currently in, with the
given name. So, we have added a directory root/een/four to our directory structure.

cp filename four:
This command will copy a certain file (with the name filename) from the place in the directory
structure we are now to root/een/four. If you want to copy a file from or to a different place, you
should specify the path in your command. For instance, if you want to copy a file named file1 from
root/een/two to root/twee/drei, you should type cp two/file1 root/twee/drei.

mv A B:
This command enables you to move or rename a file. If A and B are two different file names, the
name of A will be changed to B. If A and B are two diffferent path names followed by the same
file name, the file will be moved from A to B. If A and B are two different path names followed by
different file names, the file will be moved from A to B and it will be renamed. For example, if you
type mv two/file1 root/drie/file2, the file named file1 in directory root/een/two will be moved
to root/drie and it will be renamed to file2.

Running, suspending, and cancelling programs:
You can run a program by typing ./ followed the name of the program. For example, the ‘game of
life’ program that comes with Cash2.1 available on the course website, can be ran by typing ./life

in the terminal.

When starting a program, you will you might notice that you cannot type commands into the
terminal anymore (actually you CAN, but they dont do anything). Your prompt is not active any
more. You can return to your prompt by pressing Ctrl Z. Although you can now type in commands
again, the program is suspended. If you now type bg, the program will start running again ‘in the
background’. This means you can have your cake and eat it too.

3.2. DOWNLOADING, INSTALLING, AND FIRST USE OF CASH2.1 15

If you type & behind a command that starts a program, the program starts in the backgroud.
This means that you keep your prompt and can still type commands in your terminal.
If you want to (force) quit a certain program, type Ctrl C. This will completely shut down the
program you are running. Since most people are used to Ctrl C (and Ctrl V) being the copy-paste
commands, these commands are now availble by combining them with SHIFT (Ctrl+Shift+C /
Ctrl+Shift+C). On Ubuntu for Windows, you can right-click to paste.

3.2 Downloading, installing, and first use of Cash2.1

Now that you know a bit about the command-line, lets download and install Cash2.1. Here’s the
command lines:

• wget http://theory.bio.uu.nl/BINF/software/Cash2.1/Cash2.1.zip

• unzip Cash2.1.zip

Now you should have a directory name Cash2.1. Now it is time to start using the command line.
If you already know how this works, you can skip to §3.2.

To install Cash2.1 , simply cd into the directory, and type ’make’, followed by ’make install’:

• cd Cash2.1

• make

• make install

If you got through this without serious errors, Cash2.1should now work. But what is this ‘make’
command doing? In the next Chapter, we will briefly introduce programming and compiling code,
so you can begin using Cash2.1.

16 CHAPTER 3. DOWNLOADING AND TESTING CASH2.1

Chapter 4

Programming in C and Cash2.1

4.1 What is programming?

To use Cash2.1, we will do some programing. Let me explain what it is like to make a program.
First, one writes down sets of orders that will be executed by computers in a text file. Such a file is
called a source code. Computers cannot understand the source code as it is. Thus, one then runs
some program to translate the source code into a executable file. This executable file is what refer
to as the program. This translation process is called compilation, and the program to compile
source codes is called the compiler. Many modern programming languages like Python and R do
not require compilation, but since that this generally means they are also slower, we tend to favour
programming in C.

Let us take an example. Go to the directory called examples by typing cd examples in the
Cash2.1 directory. Type ls to see the files and the directories located in this directory. There is a
file called life.c and this is our example source code. This will show us the “Game of Life”, which
is explained in the lectures by P. Hogeweg. The file name has an extension “.c” which tells us that
the file is C source code. We are going to compile it. Type make life — this means to compile
the source code called life.c and create a program called life. Note that one should not type
“make life.c” but “make life”. If the compilation is successful, one obtains a file called life,
which is printed in green color if you type ls (if a program is executable, it will be in green color on
most systems). Now that we have an program to simulate CA, type ./life to see the output of the
program. What do you observe?

17

18 CHAPTER 4. PROGRAMMING IN C AND CASH2.1

Glider gun, it is called. In the next section, we will see how to make this kind of program by
ourselves.

4.2 First look at an example source code

The following is the source code life.c. Let’s just look through it:

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <time . h>
4 #inc lude <errno . h>
5 #inc lude <math . h>
6 #inc lude <grace np . h>
7 #inc lude <un i s td . h>
8 #inc lude < f l o a t . h>
9 #inc lude < l i m i t s . h>

10 #inc lude <s i g n a l . h>
11 #inc lude <cash2003 . h>
12 #inc lude <cash2 . h>
13 #inc lude <mersenne . h>
14 #inc lude <cash2−s . h>
15

16 s t a t i c TYPE2∗∗ L i f e ;
17

18 void I n i t i a l (void)
19 {
20 MaxTime = 2147483647; /∗ d e f a u l t =2147483647 ∗/
21 nrow = 200 ; /∗ # of row (d e f a u l t =100)∗/
22 nco l = 200 ; /∗ # of column (d e f a u l t =100)∗/
23 nplane = 1 ; /∗ # of p lanes (d e f a u l t =0)∗/
24 s c a l e = 2 ; /∗ s i z e o f the window (d e f a u l t =2)∗/
25 boundary = WRAP; /∗ the type o f boundary : FIXED, WRAP, ECHO (d e f a u l t=WRAP) .
26 Note that Margolus d i f f u s i o n i s not supported f o r ECHO. ∗/
27 ulseedG = 56 ; /∗ random seed (d e f a u l t =56)∗/
28

29 /∗ usea l l y , one does not have to change the f o l l o w i n g s ∗/
30 /∗ the value o f boundary (d e f a u l t =(TYPE2) { 0 , 0 , 0 , 0 , 0 , 0 . , 0 . , 0 . , 0 . , 0 . }) ∗/
31 boundaryvalue2 = (TYPE2) { 0 , 0 , 0 , 0 , 0 , 0 . , 0 . , 0 . , 0 . , 0 . } ;
32 }
33

34 void I n i t i a l P l a n e (void)
35 {
36 MakePlane(& L i f e) ;
37

4.2. FIRST LOOK AT AN EXAMPLE SOURCE CODE 19

38 /∗ Usage : I n i t i a l S e t (1 , 2 , 3 , 4 , 5) ;
39 1 : name o f plane
40 2 : number o f the s t a t e other than the background s t a t e
41 3 : background s t a t e or empty s t a t e
42 4 : s t a t e I want to put
43 5 : f r a c t i o n o f c e l l s that get S1 s t a t e (0 to 1) ∗/
44 I n i t i a l S e t (L i f e , 1 , 0 , 1 , 0 . 3) ;
45

46 Boundaries2 (L i f e) ;
47 }
48

49 void NextState (i n t row , i n t c o l)
50 {
51 i n t sum ;
52

53 sum = CountMoore8 (L i f e , 1 , row , c o l) ;
54

55 i f (sum==3 | | (sum==2 && L i f e [row] [c o l] . va l==1)) {
56 L i f e [row] [c o l] . va l = 1 ;
57 }
58 e l s e {
59 L i f e [row] [c o l] . va l = 0 ;
60 }
61 }
62

63 void Update (void)
64 {
65 Display (L i f e) ;
66 Synchronous (1 , L i f e) ;
67 }

Listing 4.1: life.c

Perhaps cryptic in the beginning? I will first explain its outline. The program simulates the
Game of Life. Let us first look at line 49–61. The next-state function of the Game of Life is
written here. This part is the core of the program, and a special attention is called for here. Without
knowing the details, one might well understand meaning of Line 49–61: it is the rule of the Game
of Life1.

1For those who forgot the rule of the Game of Life, let me repeat it: (1) Count the number of the cells with state
1 in the Moore neighborhood—i.e. 8 neighbors in east, west, north, south, north east, north west, south east and
south west—of the focal cell; (2) if the number of neighboring cells with state 1 is three, the state of the focal cell
becomes state 1; if the number of neighboring cells with state 1 is two and the focal cell’s state is 1, the focal cell’s
state remains 1; otherwise the focal cell’s state becomes 0.

20 CHAPTER 4. PROGRAMMING IN C AND CASH2.1

Let us look at other lines too. Line 63–67 is the thing that runs repeatedly for this program.
It is quite verbal: Display() the grid, and then apply a Synchronous() update (this applies the
next state function for the entire grid). Rince and repeat. But before all this works, there is a bit
of setup. Let’s explain that a bit more next.

Line 34–47 initializes the CA plane. Line 18–32 is a kind of mess. Actually, it sets parameters of
CA such as the maximum number of updating (MaxTime), the number of rows and columns (nrow,
ncol) and so forth. In summary, the outline is that we (1) initialize the parameters of CA Initial()

(Line 18) , (2) make a plane and initialize it by InitialPlane() (Line 34), (3) specify the rules of
CA by NextState() (Line 49), (4) update the CA plane by Update() (Line 63). Next we will see the
meaning of lines in more details.

4.3 Details of the source code

4.3.1 Header

Lines 1-14 (see below) means that one includes the library called cash2-s and also the others. In
most of the cases during the course, one need not modify this part of the code, so that one can
simply copy and paste it. This part of the code is called “header”, and files with .h are called
“header files”.

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <time . h>
4 #inc lude <errno . h>
5 #inc lude <math . h>
6 #inc lude <grace np . h>
7 #inc lude <un i s td . h>
8 #inc lude < f l o a t . h>
9 #inc lude < l i m i t s . h>

10 #inc lude <s i g n a l . h>
11 #inc lude <cash2003 . h>
12 #inc lude <cash2 . h>
13 #inc lude <mersenne . h>
14 #inc lude <cash2−s . h>
15

16 s t a t i c TYPE2∗∗ L i f e ;

Listing 4.2: Header

4.3. DETAILS OF THE SOURCE CODE 21

Line 16 is a variable definition. A variable is a storage which can contain a value such as a
character (’a’, ’b’), an integer (1) or a floating number (3.1417). When one uses variables, one
has to define them before using. In this case, we define a variable which will later contain a plane
of CA. I will explain more about the variable definition by dividing it in parts.

We start from the last word of the variable definition. Life is the name of the variable. The
naming is arbitrary. In naming variables, we can use alphabets and underscores “ ”; numbers are
also allowed to use if it does not come to the beginning of the name (e.g. Plane1, Plane2 are OK,
but not 1Plane).

Next look at the first two words, static TYPE2**. At this moment, we ignore the meaning of
static but learn by heart to put it in the beginning. The second one, TYPE2 **, tells the data
type of the variable. Variables have several different types: integer (int), real number (double),
character (char) and so on. When one defines a variable, one has to specify its type. Note that once
one defines a variable as, say, int type, one cannot store a real number, such as 1.3, in this variable
(for example, int x; x = 1.3; stores 1 in x instead of 1.3). TYPE2** is simply one of those types.
Last but not least, there is a semi-colon, “;”, at the end of line. A semi-colon says “this is the end
of an order”. Despite its littleness, it is a very important to put it.

4.3.2 Initial() function

Let us proceed to Line 18–32 (see below too). This part has a syntax such that Initial()

{something;}. This synthax is common to all the other parts of the program such as NextState()
{something;} and Update() {something;}. They are called functions. A function is a building
block of a program.

Taking a closer look, Line 18 is the begining of the function definition of the function of which
name is Initial().

1 void I n i t i a l (void)

Listing 4.3: Function definition

void in the beginning of the line means that the function returns nothing, i.e. it performs some
computation, but gives back no value (cf. sin(3.14/2.) which computes sin(3.14/2.) and returns
≈ 1.)

1 void I n i t i a l (void)
2 {
3 MaxTime = 2147483647; /∗ d e f a u l t =2147483647 ∗/
4 nrow = 200 ; /∗ # of row (d e f a u l t =100)∗/
5 nco l = 200 ; /∗ # of column (d e f a u l t =100)∗/
6 nplane = 1 ; /∗ # of p lanes (d e f a u l t =0)∗/

22 CHAPTER 4. PROGRAMMING IN C AND CASH2.1

7 s c a l e = 2 ; /∗ s i z e o f the window (d e f a u l t =2)∗/
8 boundary = WRAP; /∗ the type o f boundary : FIXED, WRAP, ECHO (d e f a u l t=WRAP) .
9 Note that Margolus d i f f u s i o n i s not supported f o r ECHO. ∗/

10 ulseedG = 56 ; /∗ random seed (d e f a u l t =56)∗/
11

12 /∗ usea l l y , one does not have to change the f o l l o w i n g s ∗/
13 /∗ the value o f boundary (d e f a u l t =(TYPE2) { 0 , 0 , 0 , 0 , 0 , 0 . , 0 . , 0 . , 0 . , 0 . }) ∗/
14 boundaryvalue2 = (TYPE2) { 0 , 0 , 0 , 0 , 0 , 0 . , 0 . , 0 . , 0 . , 0 . } ;
15 }

Listing 4.4: Initial() function

Inside of the function Initial(), we sets parameters of CA. Line 20 sets the maximum number
of updating to 2147483647. The simbol “=” assigns a value on the right hand side into the variable
on the left hand side. Is it allowed to use variables without defining it? No, but the variable MaxTime
has been already defined in the library. The same is true for the other parameters. The meaning of
the variables is almost clear from the name.

nplane is the number of CA planes. When using multiple CA planes, one first has to define
variables for all planes after the inclusion of the header files before the Initial() function. Then,
one has to put the correct number of planes in nplane.

boundary is the type of the boundary: WRAP is torus boundary, FIXED is fixed boundary, ECHO is
echoing boundary; all of those are explained during the lectures. When one wants to assign some
value in the boundaries in FIXED boundary mode, one sets boundaryvalue2 to a state of boundaries.
For example, if one wants to set the value of the boundaries to 2, one writes boundaryvalue2 =

{2,0,0,0,0,0.,0.,0.,0.,0.}.

ulseedG is the random seed. When drawing random number from the computer, they are
not really random, but just a stack of psuedo-random numbers. When when uses such a “random”
number, the top one is drawn from the stack. In other words, if you really want 2 simulations to
have different results based on random events, one should change this random seed.

4.3.3 InitialPlane() function

InitialPlane() function (Line 34-47) (1) creates CA planes, (2) initializes them, and (3) sets the
boundaries of CA (which boundary types and what boundary values have been given in Initial()).

1 void I n i t i a l P l a n e (void)
2 {

4.3. DETAILS OF THE SOURCE CODE 23

3 MakePlane(& L i f e) ;
4

5 /∗ Usage : I n i t i a l S e t (1 , 2 , 3 , 4 , 5) ;
6 1 : name o f plane
7 2 : number o f the s t a t e other than the background s t a t e
8 3 : background s t a t e or empty s t a t e
9 4 : s t a t e I want to put

10 5 : f r a c t i o n o f c e l l s that get S1 s t a t e (0 to 1) ∗/
11 I n i t i a l S e t (L i f e , 1 , 0 , 1 , 0 . 3) ;
12

13 Boundaries2 (L i f e) ;
14 }

Listing 4.5: InitialPlane() function

Look at Line 36. Here one calls the function called MakePlane(), which makes planes as the
name suggests. If one wants to represent a CA plane in the variable Life, one gives the variable
Life as an argument to the MakePlane() function. The meaning of an ampersand (&) in the front
of the variable will not be explained; it is just a rule. If one uses multiple CA planes, say Plane1

and Plane2, then one writes MakePlane(Plane1,Plane2)).

Line 44 is the most difficult syntax among all parts of the source code life.c. In this part of
the code, we initialize CA plane. In this particular example, this line sets the state of 30% of all
the cells in CA to 1, and the rest of the cells have state 0. The arguments of InitialSet() specify
the above: The first argument takes a variable which contains a plane we want to initialize (Life
in our case); the second argument is the number of cell states we wants to put apart from the
background cell states (we want to put state 1 apart from background cell state 0; thus the number
here should be 1); the third argument is the state of background (in our case, 0); the forth argument
is the state we want to put in the cells (in our case 1); the fifth argument is the fraction of the
cells which get the cell state of the forth argument (in our case 0.3). For instance, if one wants
to set the state of 5% of the cells to 2, the state of 10% of the cells to 1 and the rest to 0, then
InitialSet(Life,2,0,2,0.05,1,0.1).

The last line of the function, Line 46, set the boundaries of the CA plane by calling Boundaries2().
The value of boundaries are specified in Initial().

4.3.4 NextState() function

Let us turn to the NextState() function (see below). This function defines a rule of CA. NextState()
function takes two arguments, row and col. They are the coordinates of a cell to update. They are
used to get an information about the neighborhood of the cell at position (row,col).

24 CHAPTER 4. PROGRAMMING IN C AND CASH2.1

1 void NextState (i n t row , i n t c o l)
2 {
3 i n t sum ;
4

5 sum = CountMoore8 (L i f e , 1 , row , c o l) ;
6

7 i f (sum==3 | | (sum==2 && L i f e [row] [c o l] . va l==1)) {
8 L i f e [row] [c o l] . va l = 1 ;
9 }

10 e l s e {
11 L i f e [row] [c o l] . va l = 0 ;
12 }
13 }

Listing 4.6: NextState() function

Line 51 defines a int type variable sum. The name suggests that it gets the sum of something.
In Line 53, CountMoore8() counts the cells with state 1 in the Moore neighborhood of the cel
at position (row,col). The number 8 in the name of the function means that the number of the
neighbors is 8 and the counting does not consider the current cell itself. There are lots of variants
of CountMoore8() available (see § 5.1). The arguments to CountMoore8() function are as follows:
The first argument is the variable of the plane on which one wants to count (Life in our case); the
second argument is the state we want to count (1 in our case); the third and the forth arguments
are the coordinate of the cell where counting is performed. CountMoore8() function will return the
number of cells with state 1, and the sign = stores this value in the variable sum.

The last part of the function (Line 55–60) contains the CA rule table. The lines which contain if

and else are called if-else statements (see § 5.2). In Life[row][col].val at Line 55, the square
brackets “[][]” specifies which cell one refers to. The first clause specifies the row, and the second
clause specifies the column. Thus, Life[row][col] enables one to access the cell at [row][col]

(i.e. either to know or to modify its state). the postfix .val enables one to access the value of the
cell called val. Line 56 assignes 1 to the variable Life[row][col].val—it sets the state of the cell
at [row][col] to 1—if the condition in Line 55 is true. The same is true for Line 59.

Actually, there are more than one val in Life[row][col]. For instance, there is Life[row][col].fval,
which takes a double type value (a floating number such as 3.14). For example, if one writes
Life[row][col].val = 3.14, Life[row][col].val actually gets 3, instead of 3.14, because it is
int. But, if one writes Life[row][col].fval = 3.14, then Life[row][col].fval indeed gets
3.14. There are also val2, val3, val4 and val5 for int type, and fval2, fval3, fval4 and fval5

for double type (see § 5.1.2 for details).

4.3. DETAILS OF THE SOURCE CODE 25

4.3.5 Update() function

We are almost at the end. The last function, Update(), (see below) is a quite easy one. Update()

will be called once every time step. In our case Update() will call Display() to diplay, and
Shynchronous() to update the plane syhnchronously. The usages of these two function are as
follows. Display() function takes the CA plane as its argument, thus Life in our case. To call
Shynchronous() function, the first argument is the number of the planes we are updating, thus 1
in our case, the second argument is the CA plane, thus Life. If there are two planes, say Plane1

and Plane2, then one writes Display(Plane1,Plane2) and Shynchronous(2,Plane1,Plane2).

1 void Update (void)
2 {
3 Display (L i f e) ;
4 Synchronous (1 , L i f e) ;
5 }

Listing 4.7: Update() function

26 CHAPTER 4. PROGRAMMING IN C AND CASH2.1

Chapter 5

Advanced useage functions

5.1 Reference Manual

In this section, a summary of almost all the features of Cash2.1 is presented. It is recommended
to read through it so that one can know what one can do and supposed to do. In the following,
words followed by brackets are functions. The words within the brackets are arguments (parameters
and objects used by the function). The word in front of the function name is the ‘return type’ of
the function. If this value is void, that means the function returns nothing, but just modifies the
objects passed to it (e.g. the CA grid), or set global variables like ’MaxTime’. Another common
return is int which means that by calling the function, you get an integer value back. This can then
be used to set a variable. Here’s some examples: e.g.:

1 // NOTE This code and the f u n c t i o n s are examplary , and not part o f CASH2. 1
2 i n t Globa lVar iab le = 0 ;
3

4 void SetGloba lVar iab le (i n t va l) // A func t i on that mod i f i e s something , but r e tu rn s
nothing

5 {
6 Globa lVar iab le = va l ;
7 }
8

27

28 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

9 i n t Square (i n t va l) // A func t i on that mod i f i e s nothing , but r e tu rn s something
10 {
11 r e turn va l ∗ va l ;
12 }
13

14 SetGloba lVar iab le (1000) ; // Set Globa lVar iab le
15 a = 10 ; // a s e t to 10
16 asquared = Square (a) ; // squared s e t to 100
17 p r i n t f (”%d\n” , Square (Globa lVar iab le)) ; // Pr in t s to the te rmina l 1 . 000 . 000

Listing 5.1: Update() function

5.1.1 Functions that must be defined by the user

What follows here are all the function that have to be defined in the main program. Most of the
time, you can simply grab one of the examples, and start modifying the NextState function, the
Update function, and the Initial function to get something cool.

void Initial(void)

The function is supposed to set parameters of the CA. The following parameters are available.

(int) nplane

The number of planes. Default is 0.

(int) nrow

The number of rows of CA planes. Default is 100.

(int) ncol

The number of columns of CA planes. Default is 100.

(int) scale

The window size. Default is 2.

(int) margin

The graphics of the CA planes will be shown in a window. margin specifies the margin
between the edge of the window and the drawings of CA planes. If several planes are to
be displayed, margin also specifies the margin between planes. Default is 0.

(TYPE2) boundaryvalue2

The value of the cells at boundaries. Boundaries are either at [0][x] or at [nrow+1][x]
or at [x][0] or at [x][ncol+1]. This parameter must be set appropriately only in fixed
boundary case. In the other types of boundary, this parameter is ignored. Default is
{0,0,0,0,0,0.0,0.0,0.0,0.0,0.0}.

5.1. REFERENCE MANUAL 29

(int) boundary

The type of the boundary. It can take either WRAP (tourus) or FIXED (fixed boundary) or
ECHO (echoing boundary). WRAP, FIXED, ECHO are predefined.

(unsigned long) ulseedG

The random seed. Default is 56.

(int) Time

This variable is not supposed to be modified during whole simulation. Users can know
the current time step via this variable.

(int) MaxTime

The maximum number of iteration. Default is 2147483647 (=INT_MAX)

void InitialPlane(void)

The function is supposed to call MakePlane() to create CA planes. The function is supposed
to initilize CA planes. See InitialSet() and InitalSetS() functions below. The function is
supposed to set boundaries by calling Boundaries2() (see § 5.1.3) if the type of boundary is
FIXED.

void NextState(int row, int col)

The function is supposed to describe the rule of CA. The argument row and col will takes the
coordinate of the current cell to update.

void Update(void)

The function will be called once every time step. The function is supposed to contain functions
such as Diplay(), Plot(), Asynchronous(), Shynchronous etc (see § 5.1.3 and § 5.1.3). For
example, an user can define a new function to investigate a CA plane, and call it in Update().

5.1.2 On TYPE2

TYPE2 is a structure type defined as

typedef struct __type2{

int val;

int val2;

int val3;

int val4;

int val5;

double fval;

30 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

double fval2;

double fval3;

double fval4;

double fval5;

} TYPE2;

A cell can contains ten different values. val has a special meaning: Its value is used for graphical
display of the CA planes as follows:

0 black 6 brown 12 indigo
1 white 7 grey 13 maroon
2 red 8 violet 14 turquoise
3 green 9 cyan 15 green4
4 blue 10 magenta
5 yellow 11 orange

Apart from the above color table, the colors 16–255 are available. Look at default.ctb file in
cash2-s directory. To change the color, see ColorRGB() (see§ 5.1.3).

To obtain the values of variables, say fval2, add .fval2 at the end of the variable which contains
a CA plane. For example, if the variable of a plane is called Life, then the value of fval2 of the
cell at coordinate [row][col] is obtained by Life[row][col].fval2.

5.1.3 Available functions

The notations are as follows. Italicized words in brackets are the name of the arguments, which
should be replaced by appropriate names when functions are called. A word before the name of
arguments are the type of the argument, which should be left out when using the function. A “...”
in argument lists means that the number of arguments to the function is not fixed (the function can
take multiple arguments).

Graphics

int Display(TYPE2** plane)

The function displays the graphics of CA planes. When the function is called, the function
will redraw (update) the graphics. The arguments to the function should be the variables of
planes. The number of arguments to the function and nplane must be the same. For example,
if one has two planes, say Plane1 and Plane2, then one writes Display(Plane1,Plane2).
The order of the graphics of the planes displayed on the window is the same as the order of the

5.1. REFERENCE MANUAL 31

arguments given to the function. For example, Plane1 is shown on the most left, and Plane2

is shown next to Plane1 on the right hand side.

int ColorRGB(int ncolor,int red,int green,int blue)

The function sets the color table. ncolor is the index of the color. The color is specified by
RGB values; the RGB values must be between 0 and 255 both inclusive. The function must be
called within InitialPlane() function. For example, if one has called ColorRGB(5,0,255,0),
then the cell which has value 5 in its .val will be shown green in the graphics.

Easy neighborhood retrieval

The function makes it possible to access the neighborhood of an arbitrary cell of CA. Functions here
access only to val of the cell. To access the other varialbes, such as fval, one can refers to § 5.1.3.

int GetNeighbor(TYPE2** plane,int row,int col,int direction)

The function returns the value of .val of the neighbor cells. direction specifies the direction
of the neighbor. It takes either an symbolic name or an integer as defined in the following
table.

NORTHWEST NORTH NORTHEAST
WEST CENTRAL EAST

SOUTHWEST SOUTH SOUTHEAST
or

5 1 6
2 0 3
7 4 8

For example, if one writes:

north = GetNeighbor(Plane1,row,col,NORTH);

then north gets val of the north neighbor of the cell at [row][col].

int RandomMoore8(TYPE2** plane,int row,int col)

The function returns the value of val of the cell which is randomly chosen from Moore neigh-
borhood of the cell at [row][col]. The number at the end of the function name represents
the number of cells from which random choice is performed.

For example, one writes:

rand_neigh = RandomMoore8(Plane1,row,col);

32 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

then rand neigh gets the value of val of the cell which is randomly chosen from Moore
neighborhood. Note that one cannot know which neighbor is actually chosen (cf. § 5.1.3).

int RandomMoore9(TYPE2** plane,int row,int col)

The function returns the value of val of the cell which is randomly chosen from Moore neigh-
borhood plus the cell at [row][col] (cf. RandomMoore8()).

int RandomNeumann4(TYPE2** plane,int row,int col)

The function is the same as RandomMoore8 except that the neighborhood is von Neumann
neighborhood (NORTH,EAST,SOUTH,WEST).

int RandomNeumann5(TYPE2** plane,int row,int col)

The function is the same as RandomMoore9 except that the neighborhood is von Neumann
neighborhood.

int CountMoore8(TYPE2 ** plane,int aval,int row,int col)

The function counts the number of cells which have the state aval in val in Moore neighbor-
hood of the cell at [row][col].
For example, if one writes count = CountMoore8(Plane1,1,row,col), then count gets the
number of neighbors which have state 1 in val.

int CountMoore9(TYPE2 ** plane,int aval,int row,int col)

The function counts the number of cells which have the state aval in val in Moore neighbor-
hood plus plus the cell at [row][col].

int CountNeumann4(TYPE2 ** plane,int aval,int row,int col)

The function is the same as CountMoore8() function except that the neighborfood is von
Neumann neighborhood.

int CountNeumann5(TYPE2 ** plane,int aval,int row,int col)

The function is the same as CountMoore9() function except that the neighborfood is von
Neumann neighborhood.

int SumMoore8(TYPE2 ** plane,int row,int col)

The function sums up val) of the neighbors in the Moore neighborhood, and it returns the
sum.

int SumMoore9(TYPE2 ** plane,int row,int col)

The function is the same as SumMoore8() except that it include the focal cell in summing.

5.1. REFERENCE MANUAL 33

int SumNeumann4(TYPE2 ** plane,int row,int col)

The function is the same as SumMoore8() except that the neighborhood is Neumann neigh-
borhood.

int SumNeumann5(TYPE2 ** plane,int row,int col)

The function is the same as SumNeumann4() except that it include the focal cell in summing.

Advanced neighborhood retrieval

In this section, advanced methods of accessing the neighborhood will be explained. These methods
enable one to use not only val, but also the other values of a cell such as fval (see 5.1.2 for the
complete list of the available variables).

TYPE2 GetNeighborS(TYPE2** plane,int row,int col,int direction)

The function returns the the state of the neighbor cell of the cell at [row][col]. direction

specifies the direction of the neighbor as in GetNeighbor() function. The function is used
when one wants to obtain the values of all the variables of the neighbor cell.

For example, if one wants to obtain the value of fval5 of the north cell of the cell at
Plane[row][col], then writes:

TYPE2 neigh_state;

neigh_state = GetNeighborS(Plane,row,col,NORTH)

Then, neighbor.fval5 will give the value of fval5.

An important thing to note is that changing the value of the variable obtained in this way
does not change the value of the neighbor cell. For instance, suppose one does the following:

neigh_state = GetNeighborS(Plane,row,col,NORTH);

neigh_state.fval5 = 1.4;

This does not put value 1.4 in the variable fval5 of the north neighbor. This is because,
neighbor is a copy of the neighbor cell, but not the neighbor cell itself. To change the value
of the neighbor cell, one must use GetNeigborC() function family or GetNeigborP() function
family (see below).

TYPE2 RandomMooreS8(TYPE2** plane,int row,int col)

34 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

The runction returns the state of the cell which is randomly chosen from Moore neighbor-
hood. Note that one can not modify the state of the neighboring cell with this function (see
GetNeighborS() in this section).

TYPE2 RandomMooreS9(TYPE2** plane,int row,int col)

The runction returns the state of the cell which is randomly chosen from Moore neighborhood
plus the cell at [row][col]. Note that one can not modify the state of the neighboring cell
with this function (see GetNeighborS() in this section).

TYPE2 RandomNeumannS4(TYPE2** plane,int row,int col)

The same as RandomMooreS8() function except that the neighborhood is von Neumann neigh-
borhood.

TYPE2 RandomNeumannS5(TYPE2** plane,int row,int col)

The same as RandomMooreS9() function except that the neighborhood is von Neumann neigh-
borhood.

TYPE2 CountMooreS8(TYPE2 ** plane,int aval,int row,int col)

The function counts the number of cells which have aval value. The counting is done for each
integer variable of the cell (from val to val5). The return value is a TYPE2 value. For example,
if one writes:

TYPE2 count;

count = CountMooreS8(Plane1,3,row,col);

then count.val contains the number of neighbors which has state 3 in val, and count.val2

contains the number of neighbors which has state 3 in val2, and so forth.

TYPE2 CountMooreS9(TYPE2 ** plane,int aval,int row,int col)

The function does the same job as CountMooreS8 does, but counting is done in the Moore
neighborhood plus the cell at [row][col].

TYPE2 CountNeumannS4(TYPE2 ** plane,int aval,int row,int col)

The function is the same as CountMooreS8 except that the neighborhood is von Neumann
neighborhood.

5.1. REFERENCE MANUAL 35

TYPE2 CountNeumannS5(TYPE2 ** plane,int aval,int row,int col)

The function is the same as CountMooreS9 except that the neighborhood is von Neumann
neighborhood.

int SumMooreS8(TYPE2 ** plane,int row,int col)

The function sums up all cell states of the neighboring cells in the Moore neighborhood. It
returns the TYPE2 type value. For example, if one writes

TYPE2 sum;

sum = SumMooreS8(Plane1,row,col);

then, sum.val is the sum of val in Moore neighborhood, and sum.fval is the sum of fval in
Moore neighborhood, and so forth.

int SumMooreS9(TYPE2 ** plane,int row,int col)

The function is the same as SumMooreS8() except that it include the focal cell in summing.

int SumNeumannS4(TYPE2 ** plane,int row,int col)

The function is the same as SumMooreS8() except that the neighborhood is Neumann neigh-
borhood.

int SumNeumannS5(TYPE2 ** plane,int row,int col)

The function is the same as SumNeumannS4() except that it include the focal cell in summing.

void GetNeighborC(TYPE2** plane,int row,int col,int direction,

int* neirow,int* neicol)

The function is used to obtain the coordinate of the neighbor cell of the cell at [row][col].
direction specifies the direction of the neighbor as in GetNeighbor() function. The third
and forth arguments must be an address of the variable in which the coordinate is stored. One
can read and modify the state of the neighbor cell by using this funnction. For example, if one
writes:

int neirow, neicol;

GetNeighborC(Plane,row,col,NORTH,&neirow,&neicol);

then, neirow and neicol will get the coordinate of the north neighbor of the cell at [row][col].
With the obtained coordinate, one can write:

36 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

Plane[neirow][neicol].val2 = 4;

Then the value of val2 of the north neighbor will become 4.

void RandomMooreC8(TYPE2** plane,int row,int col,int* neirow,int* neicol)

The function puts the coordinate of the randomly chosen cell from the Moore neighborhood.
With this function, one can read and modify the state of the randomly chosen neighbor cell.
For example, if one wites:
RandomMooreC8(Life,row,col,&neirow,&neicol);

then neirow and neicol will get the coordinate of the cell which is randomly chosen (see also
GetNeighborC()).

void RandomMooreC9(TYPE2** plane,int row,int col,int* neirow,int* neicol)

The same as RandomMooreC8() function except that the focal cell at [row][col] is included
in the random choise.

void RandomNeumannC4(TYPE2** plane,int row,int col,int* neirow,int* neicol)

The same as RandomMooreC8() function except that the neighborfood is von Neumann neigh-
borhood.

void RandomNeumannC5(TYPE2** plane,int row,int col,int* neirow,int* neicol)

The function is the same as RandomMooreC9() function except that the neighborhood is von
Neumann neighborhood.

TYPE2* GetNeighborP(TYPE2** plane,int row,int col, int nei)

The function is the same as GetNeighborS() except that the function returns a pointer to the
neighbor cell. With this function, one can read and modify the state of the randomly chosen
neighbor cell. For example, if one writes

TYPE2* neip;

neip = GetNeighborP(Plane,row,col,NORTH);

then neip->val can be used to read and modify val of the north neighbor. One can write
neip->val = 5 to set val to 5. The same is true for the other (f)val’s. See also GetNeighborC(),
which is perhaps more simple to use.

5.1. REFERENCE MANUAL 37

TYPE2* RandomMooreP8(TYPE2** plane,int row,int col)

The function returns a pointer to the neighbor cell which is randomly chosen from the Moore
neighborhood.

TYPE2* RandomMooreP9(TYPE2** plane,int row,int col)

The same as RandomMooreP8() function except that the random choice includes the focal cell
at [row][col].

TYPE2* RandomNeumannP4(TYPE2** plane,int row,int col)

The same as RandomMooreP8 except that the neighborhood is von Neumann neighborhood.

TYPE2* RandomNeumannP5(TYPE2** plane,int row,int col)

The same as RandomMooreP9 except that the neighborhood is von Neumann neighborhood.

Initilization

int InitialSet(TYPE2** plane,int nval, int bground,...)

This function initializes the CA plane. The second argument is the number of cell states one
wants to use in initialization apart from the background state, which is given as the third
argument. If nval is larger than 0, the additional arguments should be supplied: The number
of additional arguments is twice as much as nval ; the first additional argument is a cell state;
the second additional argument is the fraction of the space which will get the cell state of the
previous argument (between 0–1); the third (state) and forth (fraction) arguments are about
another cell state, and so on.

For example, if one wants to put state 1 with the fraction of 0.1 and state 2 with the fraction
of 0.2, and the rest of cells have state 0 (background state), then write

\InitialSet(plane,2,0,1,0.1,2,0.2);

int InitialSpot(TYPE2** plane,int val, int size, offset)

An alternative function to initializing your plane, by placing a small circle in the middle of the
grid. For example, if one wants to put a small clump of cells with state 1 on the grid, one can
use val 1, size 20, and offset 0:

\InitialSpot(plane,1,10,0);

38 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

int InitialSetS(TYPE2** plane,int nval,TYPE2 bground,...)

The function is the same as InitialSet() function except that the function takes TYPE2 value
as arguments for the cell state. For example, if one wants to set val to 1 and fval to 0.1 for
30% of the cells, and val to 2 and fval to 0.2 for 60% of the cells, and the rest of the cells
have state 0 in val and value 0.0 in fval, then write the following:

1 InitialPlane(void){

2 TYPE2 bg, s1, s2; /* background; state 1; state 2 */

3 bg.val = 0;

4 bg.fval 0.0;

5 s1.val = 1;

6 s1.fval = 0.1;

7 s2.val = 2;

8 s2.fval = 0.2;

9 InitialSetS(plane ,2,bg,s1 ,0.3,s2 ,0.6);

10 }

void MakePlane(TYPE2*** plane1,...)

The function create—i.e. allocate memory to—planes. If one wants to use 3 planes, then set
nplane to 3 in Initial(), and write MakePlane(&Plane1,&Plane2,&Plane3) in InitialPlane(),
where the name of planes are arbitrary.

void Boundaries2(void)

The function sets boundaries of the CA. This is necessary only when the boundary type is
FIXED. The value of boundaries is specified in Init() by assigning an appropriate value to
boundaryvalues2.

Updation

void SpaceTimePlot(TYPE2** spacetime,TYPE2** plane)

The function makes a space-time plot. The space-time plot will be stored in spacetime and
created from plane. The section will be horizontal at nrow/2. For example, if one writes

SpaceTimePlot(STPlot,Plane);

Display(STPlot,Plane);

then the row at row/2 will be copied into a row of STPlot so that STPlot is space time plot.
The other rows of Plane will not be shown in STPlot.

5.1. REFERENCE MANUAL 39

void MDiffusion(TYPE2** plane)

The function does one step Margolus diffusion on plane. Note that all the (f)val’s move
together.

void ObstacleMargolus(TYPE2** diffusing plane, TYPE2** obstacle plane, int obstacle int)

void PerfectMix(TYPE2** plane)

The function mixes the plane perfectly. Note that all the (f)val’s move together.

void DiffusionFVAL(TYPE2** plane,double dconst,int fval index)

The function performs diffusion on the floating number stored in a chosen variable on plane.
fval_index specifies the variable; e.g., if fval_index=3, then the diffusion is done for fval3.
dconst is the diffusion constant; note that if the diffusion constant is too large, the diffusion
does not go correct.

void Plot(int npl,TYPE2** Plane1,...)

The function counts the number of cells which have state 1, 2, . . . and 15 in val, then it plots
the population of the cells against Time and will show it on Xmgrace. The default colors of the
cell on the graphics, and the colors of the lines in Xmgrace are corresponding to each other;
e.g., state 2 is red, the line which shows the population of cells which has state 2 is also red.
The population of state 1 cell will be displayed in black although state 1 is white in the default
graphics. The first argument is the number of planes on which one wants to count; thus not
necessarily equal to nplane; one may not want to count the cells on space-time plot. From
the second argument, one should supply CA planes on which one wants to count.

void PlotArray(double data[15])

The function plot what is in data. x in data[x] corresponds the set x in Xmgrace. The size
of array must be 15. Do not use Plot() function and PlotArray() function together. Given
one wants to plot f(t) = t, f(t) = t2 and f(t) = sin(t) where t is time, then an example is as
follows.

Update(void)
{

double x[15] = {0.,}; /* This is called an array. If one does this , one can use
it like x[0], x[1], ... , x[14]. */

x[0] = Time; /* Time is already defined in the library */
x[1] = Time*Time;
x[2] = sin(Time);
PlotArray(x); /* Do not put [] after x */

}

40 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

Then, sets s0, s1 and s2 in Xmgrace will get a value of x[0], x[1] and x[2] respectively. Sets
s3–s14 will get 0.0 always.

void PlotXY(double x,double y)

The function plots the value of x and y in Xmgrace. For example, if one writes

Update(void){

double number_now;

double number_before;

number_before = countGlobal(Plane1,1);

Asynchronous();

number_now = countGlobal(Plane1,1);

PlotXY(number_before,number_now);

}

then, one can draw a Taken’s plot with time interval of one, i.e. the plot of (xt, xt+1) for
xt+1 = f(xt).

int countGlobal(TYPE2** plane, int state)

The function counts the number of cells in CA of which val has state state. For example, if
one writes x = countGlobal(Plane,5), then x gets the number of cells which has state 5 in
val. (See also PlotXY()).

void Asynchronous(void)

The function does one step of asynchronous updating depending on NextState() function.

void Synchronous(int npl, TYPE2** plane1,...)

The function does one step of synchronous updating depending on NextState() function. The
argument npl should take the number of planes for which updating should be done, and need
not to be the same as nplane; one usually does not want to update a plane for, say, space-time
plot, which will be updated by SpaceTimePlot(). The argument plane1 takes the plane
which one wants to update. If there is more than one, say three planes, then one can write:

Synchronous(3,plane1,plane2,plane3);

It is recommended that Update(row,col) should not modify the state of cells except for the
focal cell at row,col when Shynchronous() is used. Otherwise, the updating is not done
synchronously anymore.

5.2. IF-ELSE 41

IO

void SavePlane(char* filename,TYPE2** plane,...)

(currently obsolete)

void ReadSavedData(char* filename,int npl,TYPE2** plane) Despite SavePlane being obso-
lete, this one still works. You can even type your own table to use as input. npl is the number
of planes given to the function. Note that npl does not have to be the same as nplane, which
the total number of planes. An example is as follows.

1 InitialPlane(void){

2 ReadSavedData(‘‘bud.sav ’ ’ ,1,Obstacle);
3 }

5.2 If-else

If-else statements is one of the standard control-flow statements in C, and control-flow statements
control which line of the code is executed according to arbitrary rules. The usage of the if-else
statements is the following.

1 i f (condition 1) {
2 orders 1
3 }
4 e l s e i f (condition 2) {
5 orders 2
6 }
7 e l s e i f (condition 3) {
8 orders 3
9 }

10 .
11 .
12 .
13 e l s e i f (condition n− 1) {
14 orders n− 1
15 }
16 e l s e {
17 orders n
18 }

Listing 5.2: if-else statement

42 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

If condition 1 is true, then execute orders 1, else if condition 2 is true, then execute orders 2, ... , else
execute orders n. The curry braces surrounding each set of orders tell the program from which line
to which line the program should execute if the condition is true. One can put as many else if as
one wants. One can also omit else if and else completely (but not if). To define the conditions,
we use the following primitives:

• (a == b) a is equal to b

• (a > b) a larger than b

• (a >= b) a is larger than or equal to b

• (a < b) a is smaller than b

• (a <= b) a is smaller than or equal to b

• (a != b) a is not equal b

In order to combine several conditions such that “(if condition 1 is true) AND (if condition 2 is
true)”, we can use the following primitives:

• ((a==b) && (c==d)) a is equal to b AND c is equal to d

• ((a==b) || (c==d)) a is equal to b OR c is equal to d

Brackets “()” specifies the order of the evaluation. This is like in mathematics—1 + 3×5 is different
from (1 + 3)× 5. Therefore, ((a==b||c==d)&&(a>c)) is different from ((a==b)||(c==d && a>c)).
Note that the meaning of = and == is very different.

5.3 For-loop

For-loop is also one of the control-flow statements in C; it is very useful. In this section, we will
see how to use a for-loop. The following is the example of the usage where one adds 1, 2, 3, . . . and
10.

1 x = 0 ;
2 f o r (i =1; i <=10; i=i +1){
3 x = x + i ;
4 }

Listing 5.3: for-loop statement

5.4. PSEUDO RANDOM NUMBER GENERATOR 43

In the above example, i starts from being 1, and the lines within the curry braces will be executed
many times until i<=10 is not true anymore; when i becomes 11, the execution goes out of the curry
braces. Each time the execution go thorough the loop, i=i+1 is executed one; thus i increases by
1 in each time. The result will be that x is 55. By the way, i must be defined somewhere. In the
following example, one counts the number of cells of which fval is larger than 5.0.

1 counter = 0 ;
2 f o r (i =1; i<=nrow ; i=i +1){
3 f o r (j =1; j<=nco l ; j=j +1){
4 i f (Plane [i] [j] . f v a l > 0 . 5) {
5 counter = counter + 1 ;
6 }
7 }
8 }

Listing 5.4: Counting something

i, j and counter must be defined somewhere, but nrow and ncol are already defined. Usually,
instead of i=i+1;, the statement i++; is used, and it has the same effect—inclement by 1. Therefore,
we can also write counter++; instead of counter=counter+1;

5.4 Pseudo random number generator

Pseudo random number generator is used for stochastic simulation. The function genrand real1()

returns a floating number (double type) randomly between 0 and 1 (both inclusive) with uniform
distribution. If one writes:

1 i f (g enrand rea l1 () < 0 . 3) {
2 something1 ;
3 } e l s e {
4 something2
5 }

Listing 5.5: Counting something

then something1 is executed with a probability 0.3, while something2 is executed with a probability
0.7.

44 CHAPTER 5. ADVANCED USEAGE FUNCTIONS

Chapter 6

FAQ

6.1 Questions on installing Cash2.1

Q: I get errors when launching Ubuntu for Windows for the first time
A: You probably did not enable all the developer mode options from step 1/5

Q: I do not get any graphs or display when running Cash2.1
A: Windows/Mac users, did you install an X server (VcXsrv or Xquartz)? Are you sure it is run-
ning? For Windows, is the global DISPLAY variable in ∼/.bashrc correctly set to 0:0?

Q: When compiling, it says ’Error: linker/library not found’
A: One of the dependencies (see Chapter on Installation) is not corretly installed, or your machine
cannot find it. It could be installed in a different location if you’re working from your own computer.
For the latter, try adjusting the makefiles -I and -L options by adding your paths.

Still not working? Contact bramvandijk88 [AT] gmail.com

6.2 Questions on programming in Cash2.1

• I want to count things

countGlobal, for-loop.

45

46 CHAPTER 6. FAQ

• I want to plot things

Plot, PlotArray, PlotXY

• I want to repeat something simple many times

For-loop.

• I want to use more than one variables per cell

See § 5.1.2.

• I want to use more than one plane

MakePlanes(), Display() and nplane.

• I want to modify the state of neighbor cells

RandomMooreC8() and RandomMooreP8(), etc.

• I want to do something once in so many time steps

if(Time%so many time steps==0).

• Every time a function is called, a variable gets a unknown number

Initilize the variable. Put static in front.

• How to do stochastic simulation?

See §Pseudo random number generator.

