
G R I N D

GReat INtegrator Differential equations

Rob J. de Boer & Ludo Pagie

Theoretical Biology, Utrecht University
Email: R.J.DeBoer@uu.nl

This document accompanies GRIND Version 2.15

GRIND is a user friendly computer program for the study of differential equation models by means of
numerical integration, steady state analysis, and phase space analysis (e.g., nullclines and separatrices).
The model equations are defined in a very natural formalism, and one can easily change parameters and
initial conditions. The user interface to GRIND is based upon a simple command language. GRIND
supports interactive OpenGL and/or X11 graphics, and exports Postscript files.

The best way to learn more about GRIND is to walk through the example on page 11, and/or try the
tutorial. Afterwards read the rest of the manual to see what else GRIND has to offer to you. GRIND
commands have a help function to remind you of their syntax.

1 Model

A model consists of a set of differential equations and possibly algebraic expressions. Differential equations
are defined in the notation variable ’= equation;. For example, the logistic equation would be x ’=

r*x*(1-x/K); A good example of an algebraic variable would be a quasi steady state variable, or a
function appearing repeatedly in the model.

For example, the predator-prey model on page 11 is

F = R/(h + R);

R ’= r*R*(1-R/K) - b*N*F;

N ’= b*N*F - d*N;

Which has three equations, where F is an algebraic variable, R and N are variables (for prey and predator,
respectively), and r, K, b and d are parameters.

Please note the semicolons (;) at the end of each equation. Each equation may therefore cover several lines.
The algebraic expressions have to precede the differential equations, and an expression should be defined
before it is used in another expression. The names of variables, algebraic variables, and parameters should
be less than 11 characters long, and names start with a letter. The other nine characters should be letters
or digits. Equations consist of names, operators (i.e., + - * / ^), numbers, and/or functions. Numbers
in equations, e.g., 3.14159265, should also be shorter than 11 characters. You can use all standard C-
functions with one or two arguments. Examples are exp(), log(), sqrt(), sin(), and fabs().
We have added for you max(,), min(,), and heaviside().

1

For some functions GRIND will tell you that she doesnot know how to compute the derivative. In such
circumstances GRIND will give you a warning, and will suppress the Jacobian matrix. (This matrix is
required for variable time step integration with ROW4A and for neighbourhood stability analysis).

2 The basic idea

A model has to be typed into a text file. You may use any ASCII text processor (like emacs or WordPad)
to create such a file. In Windows you should save this file with the .grd extension. For Linux users no such
extension is required, but if you like extensions also use .grd. Linux users should start grind by typing
grind filename (whether or not the file has the .grd extension). Windows users simply double click the
filename.grd icon. This activates the GRIND preprocessor that will read your file, will report possible
errors, and will create a C-program. This C-program is compiled, loaded with the GRIND libraries, and
is executed. When you get the GRIND> prompt, you can start typing GRIND commands. The first thing
that you may want to do is to initialize your parameters (e.g., b=3), and your variables (e.g., x=1). It is
usually a good idea save initializations in a file, e.g., parameters filename or parameters model.txt,
and to start your next session with reading this file (e.g., read filename). Whenever a computation
takes too long, you may try to regain control by hitting Control C key.

Subsequently, one probably wants to see the phase space by calling the 2d or 3d commands. The axes of
the phase space can be changed with the axis command. Having the model and the phase space fully
specified you may start analyzing the model in various ways. Start numerical integration using run, draw
the x and y nullclines (e.g., null X Y), try to find an equilibrium using newton, etcetera. When you are
done you can stop GRIND using the bye command.

GRIND commands may be abbreviated to the first two letters. Most commands may have several ar-
guments that typically have some sensible default. GRIND usually remembers previous arguments. For
example, after having asked for the x and y nullclines by nu x y (for nullcline x y), the next time you
get the same nullclines by just typing nu without arguments. GRIND has a reasonable help function:
command help explains the meaning and syntax of the command. help lists all possible commands. When
using the OpenGL graphics interface you can rotate 3-dimensional phase space with the left mouse-button,
zoom in and out with the z and Z key, and reset the 3-dimensional projection with the r key.

Numerical integration starts when you give the run command. The time stretch that the integrator will
compute is called the finish. Several times during this time stretch the integrator is interrupted for
generating output. The number of intervals at which output is generated is set by the second argument
of the finish command. The interrupts at each interval may be used to introduce random noise, and
play a role in Poincaré sections. GRIND either uses OpenGL or X11 for the graphical display. Graphics
can be exported to Postscript or TEX by the export command.

In GRIND we speak of the “‘attained state” and the “initial state”. The initial state corresponds to the
values that you have typed. The attained state corresponds to the values numerically attained by GRIND
(e.g., by integration or by a Newton-Raphson iteration). The attained state can be copied into the initial
state by the keepvar command.

2

3 Reference manual

Generally, GRIND input lines are of the following form:

command argument1 argument2 ... argumentn;

Thus, different arguments are to be separated by a space “ ”. Arguments may be integer or real values,
strings, characters, and keys like off or log. Several commands may be placed on one line if they are
separated by semicolons (;). When commands are positioned on different lines you may omit the semicolon.
Parameters and variables can be set by simple assignments: identifier = value;. Again the semicolon
(;) may be omitted when you type a newline. In this manual a “/” in this manual means “or”, i.e., a “/”
separates alternatives. For example, axis x/y/z/t means that the axis command expects x, y, z, or t

as its first argument. Second, when arguments have square brackets “[]” around them this means that
those arguments can be omitted.

Here are all possible GRIND commands in alphabetical order:

variable = expression; parameter = expression;

This sets parameters and initial conditions. The expression is usually just real or integer number. One
may use expressions involving the operators +-*/^, and the names of variables and parameters.
See: calculator;

2d;

A 2D state space is generated.

3d;

A 3D state space is generated.

axis x/y/z/t variable/parameter minimum maximum [nticks] [log];

One axis of the state space is defined, i.e., is related to the variable or parameter appearing as the second
argument. The axis runs from minimum to maximum, and has nticks tick marks. The log keyword specifies
that the axis should be made logarithmic. A logarithmic axis runs from 10minimum to 10maximum. axis

t defines the axis of the plot generated by the takens command.
Default: axis - - 0.0 1.0 3;

axis h/v minimum maximum [nticks] [log];

Defines the horizontal or vertical axis of time plots. The arguments are the same as those explained
above. The only difference is the absence of a variable name. The horizontal axis of a time plot can be
changed but is automatically reset to length finish by the run command.

bifurcate x/y/z [npoints [nsteps [transient]]];

This is a brute force method of making a bifurcation diagram. The axis indicated by the first argument
should correspond to a parameter. This parameter is changed in nsteps small steps along the axis. For
each parameter value the model is run for transient time steps, after which npoints Poincaré crossings
are recorded. The starting point of the bifurcation diagram is the current value of that parameter.
You should be sure that for that parameter value the trajectory crosses the Poincaré plane within the
normal finish. The waiting period can also be used for adjusting the location of the Poincaré section:
if option adjust is set, GRIND will use the transient to estimate an average value for the location of
Poincaré section. Finally, in combination with option map, GRIND will not do Poincaré sections but
will iterate your model for npoints time steps (after a possible waiting period of transient time steps).

3

See: option adjust/keepvar/map, poincare.
Default: bifurcate - 1 50 finish;

bye;

GRIND will stop, close files, and graphic windows.

calculator expression;

Prints the outcome of expressions involving the operators +-*/^, some functions, and the names of
variables and parameters. A variable name refers to the initial state of that variable.

continue x/y/z [arclength] [log];

After having attained an equilibrium by the newton command you may want to continue the equilibrium
along some parameter. There are sophisticated packages that do this sort of bifurcation analysis for you.
GRIND implements just a very primitive continuation algorithm. The basic idea is to have a parameter
on some axis of your phase space, and to continue along that axis (see the first argument x/y/z). The
arclength argument influences the maximum arclength of the continuation algorithm. This should just
be a relatively small number. When your variables and your continuation parameter have values that
differ markedly, it may be helpful to add the log option, which computes arclengths on logarithmic scales.
Default: continue x 0.01;

See: newton, perturb.

cursor;

Activates the cursor in order to select a new initial state. Move the cursor to the place in the 2-dimensional
phase space that you want to select, and click your mouse. The point will be copied into the initial state.

display file [pattern];

GRIND display the contents of the file appearing as the first argument. If you provide a second text
argument, only those lines of the file containing that text will be listed.
Default: display model;

e2n;

Executes the commands: erase;2d;nullcline.

e2r;

Executes the commands: erase;2d;run.

e3n;

Executes the commands: erase;3d;nullcline.

e3r;

Executes the commands: erase;3d;run.

ert;

Executes the commands: erase;run;timeplot.

eigen [jac];

Performs a neighborhood stability analysis, giving you the eigenvalues and eigenvectors of the Jacobian
matrix. The Jacobian is calculated for the state attained by the last newton command. The argument
jac lets the Jacobian matrix be printed.
See: option mark, perturb.

4

erase;

The screen is cleared, a new plot is started, all graphics segments are deleted.
See: ert, e2r, e2n, e3r, e3n.

export filename[.ext];

Exports the current graphics window into the name file. The extension determines the graphics format:
the default is Encapsulated Postscript (.eps). If you are using the OpenGL environment, you can also
export PDF-files (.pdf) and TEX-files (.tex). We are working on PNG-files.
Default: export model.eps;

finish time [nintervals];

finish time sets the time stretch of the integration. The integrator is interrupted nintervals times for
generating output (and/or for random noise).
Default: finish 100. 10;

format [print/]eigen/vector/axis [ndigits];

GRIND prints numbers with the C “%-w.ng” format where w is the width of the field, and n the number
of digits to be printed to the right of the decimal point. The ndigits arguments the precision with with
numbers are printed generally (print), for eigenvalues (eigen), for eigenvectors (eigen), and along for
the axis of the phase space (axis).

grid [npoints];

Generates a grid of trajectories in a phase space. Trajectories start at regular intervals in the state space.
The npoints argument defines the number of starting points per row. grid is influenced by several
options. The starting points of trajectories are shown as nice little arrows when you provide option

initial. Trajectories will also use the axes of the phase space as starting points if have set option axis.
See: finish, option axis.

Default: grid 5;

help;

Lists all possible commands. Get help on a command by command help, and get the current state of the
command with command status.

integrator row4a/rk/euler [tolerance];

This selects the algorithm for numerical integration. First provide the name of the algorithm (where rk

stands for Runge Kutta). For the variable time step integrators, the optional tolerance argument sets
the tolerance. In the case of Euler integration, this argument sets the time step delta.
Default: integrator row4a 0.0001;

keepvar;

The attained state is copied to the initial state, i.e., all variables obtain as the initial value the value they
attained in the previous integration.

load file;

Reads a file containing the output from a file that was generated by a run command. In fact load will
read any file of nvar+1 columns, where nvar is the number of differential equations, and the first column
is assumed to be the time. loaded data can be replotted in a phase space by the plot command or in
the time plot by the timeplot command. The first row of the loaded file becomes the new initial state
and the last row becomes the new attained state.
See: plot, run.

5

macro [name command;command;command];

Several commands can be combined into a named macro. The first argument is the new name of the set
of commands. They are all listed by an empty macro statement. A macro is undefined by macro name.

mine [any argument];

This allows for the execution of a C-function supplied by the user. This of course requires a little knowledge
of how GRIND is programmed. In the file created by the preprocessor you will find a dummy function
mine(argc,argv) that simply echoes the arguments on the command line. If you want to add something
to GRIND just modify this routine.

mode [alpha/2d/3d/none];

In graphics mode (i.e., 2d or 3d mode) the output of integrations and continuations is immediately plotted
in the phase space. GRIND assumes graphics mode automatically after a 2d or a 3d command. GRIND
resumes alphanumerical output if the mode is set accordingly, i.e., by the alpha argument. mode none

generates no visible integration output at all (this may be useful in combination with timeplot).
Default: mode alpha;

nep;

Executes the commands: newton;eigen;perturb.

newton [tolerance];

Searches an equilibrium using Newton-Rhapson’s method with an optional tolerance. The initial state
is used as an initial guess, the result is stored in the attained state. The attained state may be continued
with continue. Invariant manifolds of the attained state can be studied with perturb.
See: continue, eigen, nep.
Default: newton 1e-9;

noise parameter mean stdev [off] [positive];

Sets Gaussian noise on the listed parameter. The noise is set each time the integrator is interrupted for
output (which is determined by the second argument of finish). Noise resets the parameter value to
random numbers drawn from a normal distribution with the mean and stdev given as arguments. off

switches the noise off. To prevent negative parameter values use the positive argument.
Default: stdev = 10% of mean;

See: finish

noise parameter uniform [off];

Sets the listed parameter to a value uniformly drawn between 0 and 1. The value is set each time the
integrator is interrupted for output (which is determined by the second argument of finish). off switches
the noise off. Uniform noise can be used to stochastically create mutants. For example, in a model where
mu is a mutation rate and x is a variable for the population size, one expects mu*x mutants per time
step. As long as mu*x < 1 one can draw a single mutant with probability mu*x. Thus, defining a dummy
parameter u by setting in GRIND noise u uniform, and adding the following line to the model: m =

heaviside(mu*x-u)*max(1,mu*x);, the number of mutants, m=1 with probability mu*x when mu*x < 1,
and m=mu*x otherwise. Note that the Heaviside function f(x) = 0 when x < 0 and f(x) = 1 when x ≥ 0.
Example:
m = heaviside(mu*x-u)*max(1,mu*x);

x ’= r*x*(1-x/k) - m;

y ’= m + r*y*(1-y/k);

nullcline [variable ... variable];

6

nullcline draws 0-nullclines for each of the variables.

option ...[off];

Sets an option:
adjust: adjust the location of the different Poincaré planes in the bifurcation command.
axis: grid points include the axes of the phase space.
backward: integrate backwards in time.
calculator: variables in calculator use their initial or final value.
closed: the frame of the box shown in 3D spaces is closed.
erase: the screen is erased when timeplot, 2d, or 3d is called
initial: GRIND graphically indicates the integration starting point.
keepvar: in bifurcate the next sample continues at the point attained in the previous integration.
label: labels an axis with ticks and labels.
logfile: stores commands in a model.log file.
map: GRIND assumes that you are studying difference equations (instead of a differential equations).
This influences bifurcate and eigenvalue calculations.
mark: marks the steady state and its stability whenever eigen is called.
points: draw single points instead of connected lines as integration output.
positive: negative variables are set to zero.
truncate: trajectories are stopped when they leave the phase space. This is very helpful in combination
with backward integration.

An option is switched on by option name and off by option name off. Use option status to see the
current values of all options.

output [+-] variable variable expression parameter;

This opens an output buffer that containing the variables and/or algebraic variables to be printed or
plotted as the output of the numerical integration. By default all variables are contained in the output
buffer. Using the + or - option anywhere between the names causes items to be added or deleted from
the buffer.

parameters [file];

parameters provides a listing of the parameter setting. Such a listing can be saved on a file by providing
an filename. Using the read command you can read such a parameter listing again.

perturb vector [step];

This allows you to study one-dimensional stable and the unstable manifolds of an equilibrium. Assuming
that you have attained an equilibrium (by newton or run) for which you have already asked the eigen-
values and eigenvectors (by eigen), perturb makes a little perturbation of size step along the vectorth

eigenvector. The result is copied into the initial state. Thus, a subsequent run starts along this partic-
ular eigenvector. The vector argument corresponds to the eigenvalues provided by eigen, the default
(vector=1) being the eigenvector corresponding to the largest eigenvalue. GRIND is unable to generate
the 2D outset that is spanned up by a pair of imaginary eigenvectors. You will get an error message
if you would attempt to do this. When you perturb along a stable manifold (i.e., along a separatrix),
option backwards is automatically switched on. It is advisable to also switch option trunc on in such
circumstances. The second step argument specifies the distance to the equilibrium. This should typically
be a small number. If the step argument is negative, the perturbation is in the opposite direction along
the eigenvector.
Default: perturb 1 0.0001;

See: eigen, newton, nep, option trunc.

7

plot;

Replots a previous trajectory in a 2d or 3d phase space.
See: load.

poincare variable value [up/down/both];

This selects the hyperplane, variable=value, of the Poincaré section. With up/down/both you can select
crossings for the variable increasing (up), decreasing (down), or both directions. Poincaré sections are
influenced by the finish and its number of interval.s For each point on the Poincaré section GRIND runs
the numerical integrator for finish time steps. Each interval a check is made for a cross of the Poincaré
section. When a crossing is found GRIND will iterate the numerical integration until the crossing is
accurately determined.
See: finish.
Default: poincare variable 0 up;

poincare npoints [tolerance];

This attempts to record npoints crossings of the trajectory through the Poincaré section. The second
tolerance argument determines the accuracy with which the crossing is determined. The initial state is
used as the starting point for the trajectory until the first crossing. Each successful point that is found
will be the initial condition for the next point. Note that for each point on the Poincaré section GRIND
will maximally run for finish time steps.
See: finish.
Default: poincare 1 0.0001;

rgb number real real real;

Set the Red-Green-Blue values of the color number. Use rgb status to see the current values.

readfile filename;

Commands are read from a file.
Default: readfile model.txt;

run [file];

Integration starts. In graphics mode the output is plotted on your screen, in alphanumeric mode (mode
alpha) the output is printed on your screen. If a filename is provided, the integration data is saved on a
file. Such a file can be read again by load.
See: finish, load, option points, timeplot.

shade [x/y/z] variable [integer];

The nullcline surface of the variable is shaded along the the x, y, or z-axis. The integer argument
specifies the number of lines.
Default: shade z variable 10;

takens [delta];

Generates a Takens reconstruction of the variable set by the axis t command. This means that the
variable is plotted at a function of itself delta time steps ago. Thus, takens plots a variable at time t as
a function of the same variable at time t-delta. This is a standard technique for studying chaotic time
series.
Default: takens 1;

timeplot [variable ...variable];

A time plot of the previous integration is generated. Thus, you have to do a run before you can call

8

timeplot. The horizontal axis runs from zero to finish. The vertical axis is to be defined by axis v

command. The variables to be plotted are typically defined by the output buffer. You may select a subset
of them by supplying names as arguments to the timeplot command.
See: load, run.

triangle [size];

Plots a triangle denoting the vector field at the initial state. The size argument scales the size of the
triangle.
Default: triangle 1;

value variable parameter;

Prints the values of parameters, algebraic variables, and/or variables.

vector [npoints];

Draws a vector field. The npoints argument defines the number of arrows per row.
Default: vector 5;

where [initial] [file];

The attained state (or the initial state with the initial option) is indicated in the state space, and is
printed with the derivatives. When you provide a filename as the last argument the state is also written
to that file. Such a file can be read by the read command.

9

4 Credits and Algorithms

Starting in 1983, Rob de Boer developed GRIND as a successor of the TRICLE system devised by P.
Hogeweg and B. Hesper (“Interactive Instruction on Population Interactionbs” Comp. Biol. and Med. 8,
319–327, 1978).

GRIND implements three different algorithms for numerical integration. The default is the variable-
time-step ROW4A method which was developed by B.A. Gottwald & G. Wanner for the analysis of
stiff systems of ordinary differential equations (“A Reliable Rosenbrock Integrator for Stiff Differential
Equations” Computing 26, 355–360, 1981). ROW4A requires a Jacobian matrix which is default provided
by the preprocessor. The second integrator is the variable-time-step Runge Kutta method provided by
W.H. Press, B.P. Flannery, S.A. Teukolsy & W.T. Vetterling in Numerical Recipes. The third is a simple
(fixed-time-step) Euler integrator. The integrator is set interactively with the integrator keyword.

GRIND searches for nullclines by stepping through 2d sections of the phase space keeping track of switches
in the sign of the derivatives. For Poincaré sections GRIND checks each interval of a trajectory (see
finish) whether it has crossed the Poincaré plane. Subsequently, the actual point is determined by a
Newton-Raphson iteration.

GRIND finds roots of differential equations by the Newton-Raphson algorithm supplied by Numerical
Recipes. Eigenvalues and eigenvectors are computed by means of the EISPACK routines (B.T. Smith et
al., 1976, Lect. Notes in Computer Science, Springer-Verlag, Berlin).

Ludo Pagie translated GRIND into the C programming language and made the OpenGL inter-
face. GRIND processes the commandline using the “getline” software from the NFTP package
(http://www.ncftp.com/. This code originates from Chris Thewalt (thewalt@ce.berkeley.edu) and is
updated by Mike Gleason (http://www.NcFTP.com/contact/)

The rotations of the graphics under GL is based on the “trackball” algorithm, originally
adapted (ripped off) from projtex.c (written by David Yu and David Blythe). See the
SIGGRAPH ’96 Advanced OpenGL course notes. The compiler environment for the win-
dows version, MinGW, is uncopyrighted (see: http://www.mingw.org). In addition, we use the
“pthread-win32” library (http://sources.redhat.com/pthreads-win32), and the “glut” library
(http://mywebpage.netscape.com/PtrPck/glut.htm).

10

5 Examples

These examples can all be copied to your own directories from the GRIND models subdirectory.

5.1 a Predator Prey model

Suppose you have the text file called monod.grd as displayed on the left. This contains the differential
equations of a predator-prey interaction with a saturated functional response.

F = R/(h + R);

R ’= r*R*(1-R/K) - b*N*F;

N ’= b*N*F - d*N;

The algebraic expression F defines the functional response,
and is used in the differential equations R’= and N’=.

Under Windows you can make this file with WordPad, in Unix with nedit or xemacs. In Windows you
double click on the monod.grd icon, in Unix you type grind monod.

Consider the session given below, where the left column contains what you type:

r=1;K=1

b=0.25; d=0.2; h=0.1

parameters monod.txt

This sets the parameters. They are listed and stored in a
file called monod.txt.

axis x R 0 2

axis y N 0 2

2d

nullcline R N

Set up a phase space with R on the horizontal and N on
the vertical axis, and draw their nullclines.

finish 100 100

R=0.1;N=0.1

run

erase

axis v 0 2

timeplot

Set the integration time to 100 time steps, and print 100
steps. Set the initial condition R=0.1;N=0.1, and run the
integrator. Plot the output with a vertical time plot axis
between zero and two.

e2n

R=0.5;N=1.5

newton

eigen

The nullclines are redrawn, and from the initial guess
R=0.5;N=1.5 we find the non-trivial steady state, and its
stability.

ax x K 0.01 2

2d

continue x

This state is continued for the parameter K along the X-
axis.

ax x R 0 2

ax z K 1 2

e3n

shade R

Finally we set op a 3-dimensional phase space and shade
the nullcline of the prey. If you are using OpenGL you can
click the left-button of your mouse for rotation.

Note that if you repeat a command (see the repeats of nullcline in e2n and e3n) you don’t have to

11

repeat all arguments.

5.2 An example with a macro

Consider the following immune network model [De Boer & Hogeweg 1989, Bull. Math. Biol. 51: 381-408].
The column on the left is the model, which is a file called bc.grd, and that on the right is a text file
called bc.txt.

h1= a*x2;

h2= a*x1;

f1= p * h1/(p1 + h1) * (p2/(p2 + h1));

f2= p * h2/(p1 + h2) * (p2/(p2 + h2));

x1’= s + x1*(f1 - d);

x2’= s + x2*(f2 - d);

a=1; p=1.5

d=1; s=10

p1=1000; p2=1E+06

x1=1e8; x2=1e5

fin 100 100

ax x x1 -1 8 4 log

ax y x2 -1 8 4 log

ax z a -3 0 4 log

ax v -1 8 log

macro cne cursor;newton;eigen

In GRIND you type:

read bc.txt

2d

nullcline x1 x2

run

e2n

grid 5

This starts with reading the bc.txt file, and plotting null-
clines. Then run the integrator. Finally nullclines are
redrawn, and a grid of trajectories is computed.

cne;cne;cne
Call the macro three times, and click three times close to
a steady state to check its stability from the eigenvalues.

e3n

shade x1

bye

Three-dimensional nullclines are draw, and x1 is shaded.

5.3 Models that depend on time

For seasonal variation on a parameter one should count days by writing a differential equation day ’= 1;.
Taking the sin[2π(day − ∆)/365] one obtains a yearly seasonal variation between −1 and 1, with a
parameter ∆ to shift the peaks of the sinusoidal function to the appropriate time of the year. For
instance, to set seasonal variation on the growth rate r in the above-mentioned predator prey model one
would add an algebraic expression like:

r = r0 + e*(sin(2*3.1416*(day-Delta)/365));

day ’= 1;

R ’= r*R*(1-R/K)

where the e parameter determines the amplitude of the variation of r around r0.

12

To make a seasonal variation that is “on” during one period of the year, and “off” the rest of the year, one
can truncate the sinus function using only its positive part, e.g., S=max(0,sin(...)). To make a function
that switches on and off at time points defines by the user, one could multiply two sinus functions, that
are appropriately shifted in time, and take this product through a Hill-function to let it switch between
zero and one with arbitrary steepness.

For example, consider a seasonal insect population that is active from April until June, e.g., from day
100 to 200. During this season the eggs (E) hatch at rate h per day. During their season hatched adults
survive with a probability depending on the adult density. After the season they lay eggs and die rapidly
at rate m per day. Look at the model called season.grd with runfile season.txt:

on = max(0,sin(2*3.14*(day-Ton)/365));

off = max(0,sin(2*3.14*(day+182.5-Toff)/365));

S = (on*off)^5/(eps^5+(on*off)^5);

day ’= 1;

A ’= h*S*(E - d*A*(1+e*A)) - m*(1-S)*A;

E ’= n*(1-S)*A - h*E*S - l*E;

Ton=100

Toff=200

eps=0.01

fin 730 365

out S

ma go keepvar;ert

re season.txt

run

timeplot

Check that the expression S indeed switches on around
day 100 and off around day 200.

d=0.001

e=10

h=1

l=0.001

m=1

n=10

E=1

axis v 0 10

output S A E

run

ert

go

go

Set parameters such that there is strong density dependent
mortality of the adults during the season (e=10;d=0.001),
and that adults die rapid when the season is over (m=1).
Eggs hatch rapidly, and decay slowly. Each adults lays
n=10 eggs per day at the end of the season. Rescale the
vertical axis of the timeplot and ask for output of S A and
E. Start with one egg, and call the go several times until
the attractor is approached.

5.4 Models with a second derivative

Consider Duffing’s equation, and Udea’s analysis of it, discussed in the highly recommendable book
Nonlinear Dynamics and Chaos by J.M.T. Thompson & H.B. Stewart (Wiley, London, 1986):

x′′ + kx′ + x3 = B cos(t)

By setting y = x′ this second-order differential equation translates into the first-order GRIND model
listed below. Suppose it resides in the file duffing in your directory. Consider the following session,
where t defines the time, y refers to x′, and x defines x′′. The column on the left is the model (called
duffing.grd), and that on the right is a file called duffing.txt.

13

t ’= 1.0;

y ’= b*cos(t) - k*y - x^3;

x ’= y;

b=7.5; k=0.05

x=3; y=4

axis v -3 3

axis x x -4.5 4.5

axis y y -9 9

axis z t 0 3

finish 31.41 100

output x

re duffing.txt

2d

run

ert

Read the input file, make a 2-dimensional phase space,
run, and make a time plot.

finish 6283.18 1000

axis x x 1 4

axis y y -6 6

2d

option points

option initial off

run

export fig.eps

bye

Resize the phase space, switch the indication of the initial
state off, and plot a stippled trajectory. Export the graph-
ics window to an encapsulated PostScript file fig.eps

that can later be printed.

5.5 Maps

GRIND can be fooled to analyse difference equations or maps. The model definition of a map follows that
of differential equations. Thus by writing x ’= a; we mean that the change ∆x = a, where ∆x = xt+1−xt.
For example, the standard logistic map xt+1 = rxt(1 − xt) has to be written in a file as x ’= r*x*(1 -

x) - x; In GRIND you would type

option map

option pos

r=3.3

x=0.1

finish 100 100

run

timeplot

Which tells GRIND that you want this model to be a map,
and where option positive prevents negative values of
the x variable. Set the parameter and the initial condition,
and run the model for 100 time steps.

You can draw the famous bifurcation diagram of the logistic map with the bifurcate command.

axis x r 1 4

axis y x 0 1

erase

2d

r=2;run

erase

2d

bifurcate x 10

Define a two-dimensional space with the r parameter on
the horizontal axis. Set the growth rate to an intermediate
value and run the model to approach the attractor. Then
plot a 10 points of the trajectory for fifty different values
of r.

Note that if you use bifurcate without option map it will make many Poincaré sections for you.

14

We now run the model for a thousand time steps, and plot the results in a Takens reconstruction:

axis t x 0 1

finish 1000 1000

run

erase

takens 1

erase

takens 2

where the axis command defines the axis of the Takens
plot. The first takens command plots xt+1 as a function
of xt, and the second one plots xt+2 as a function of xt.

Now we do the same with Gaussian noise on the growth rate r

noise r 3.5 0.1

run

takens 1

15

6 Running and installing GRIND

GRIND is available from theory.bio.uu.nl/pub/rdb and theory.bio.uu.nl/rdb/grind.html provides
some installation instructions.

6.1 Unix

The GRIND system consists of a script called grind, the preprocessor grindpp, and the library
libgrind.a. During installation the script learns where the library and the preprocessor are installed.
Thus, after installation a user has to have the grind script somewhere in the Unix path.

Run your models by grind [-jx] filename. GRIND will open a graphics window as soon as you start
doing graphics. Graphics can be exported as (encapsulated) Postscript, TEX-code, and PDF files. You
can suppress the Jacobian with the option -j, and ask for X11 graphics with the -x option. Options can
of course be combined (i.e. -xj and -jx are both correct) and be omitted.

For installation check the first lines of the makefile in the GRIND directory. Here you may have to set
the X11DIR variable, which gives the location of the X11-library.

6.2 Windows

Type your model as a text-only file using any text editor (e.g., WordPad). Give your models the .grd

extension. GRIND uses “minimal GNU for Windows”, and after a typical installation the required MinGW

files and GRIND files are stored in a folder called Grind. The best way to install GRIND is to download
and run the installer grind-2.xx.exe, which lets you choose a location for the installation (the default
place is C:

Grind). After that text-only files with the .grd extension can be double-clicked to start GRIND. Check
the webpage theory.bio.uu.nl/rdb/grind.html is this fails.

16

