Vectors, matrices, eigenvalues and eigenvectors

A vector in 2 dimensions

Adding of 2 vectors

Scaling of vector

Rotation of a vector

Scaling a vector: $0.5 \vec{V}=0.5\binom{2}{1}=\binom{0.5 \times 2}{0.5 \times 1}=\binom{1}{0.5}$
Adding two vectors: $\vec{V}+\vec{W}=\binom{2}{1}+\binom{1}{3}=\binom{2+1}{1+3}=\binom{3}{4}$
A scalar times a matrix: $\lambda\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}\lambda a & \lambda b \\ \lambda c & \lambda d\end{array}\right)$
A matrix plus a matrix: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{ll}x & y \\ z & w\end{array}\right)=\left(\begin{array}{ll}a+x & b+y \\ c+z & d+w\end{array}\right)$
A matrix times a matrix: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)=\left(\begin{array}{ll}a x+b z & a y+b w \\ c x+d z & c y+d w\end{array}\right)$

Hence the product of a matrix times a vector:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

This matrix transforms the vector into another vector:

Complex scaling of vector

Scarus sp.

Pomacanthis.

Skulls of a human, a chimpanzee and a baboon and transformations between them

A system of linear equations: $\left\{\begin{array}{l}x-2 y=-5 \\ 2 x+y=10\end{array}\right.$
Can be written as $A \vec{X}=\vec{V}$:

$$
\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)\binom{x}{y}=\binom{-5}{10} \quad \text { or } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{p}{q}
$$

Which vector \vec{X} is transformed by the matrix A into the vector \vec{V} ?
If we were to know the inverse, A^{-1}, of the matrix A one could write

$$
A \vec{X}=\vec{V} \quad \leftrightarrow \quad A^{-1} A \vec{X}=A^{-1} \vec{V} \quad \leftrightarrow \quad \vec{X}=A^{-1} \vec{V}
$$

where A^{-1} is formally defined by the relationship, $A^{-1} A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Hence

$$
\binom{x}{y}=\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)^{-1}\binom{-5}{10}
$$

The inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

requiring that $a d-b c \neq 0$.
Check by matrix multiplication

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) & =\binom{a d-b c-a b+b a}{c d-d c-c b+d a}=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right) \\
& =a d-b c\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Hence

$$
\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)^{-1}=\frac{1}{1+4}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)
$$

and

$$
\vec{X}=\frac{1}{1+4}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)\binom{-5}{10}=\frac{1}{5}\binom{15}{20}=\binom{3}{4}
$$

Simplify solving linear equations by using the inverse matrix.

Previously, starting from $\left\{\begin{array}{l}x-2 y=-5 \\ 2 x+y=10\end{array}\right.$ one would have solved the first equation to obtain $x=2 y-5$, which gives in the second:
$2(2 y-5)+y=10$ or $4 y-10+y=10$ or $5 y=20$ i.e. $y=4$, and hence $x=3$.

Because the system can only solved when $a d-b c \neq 0$ we define the determinant and the trace of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ as:

$$
\operatorname{det}[A]=a d-b c \quad \text { and } \quad \operatorname{tr}[A]=a+d
$$

Linear systems only have solutions when $\operatorname{det}[A] \neq 0$.
The importance of the trace wil appear later.

Things become more complicated for large matrices, e.g., for

$$
A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right), \quad \operatorname{det}[A]=a e i-c e g+b f g-b d i+c d h-a f h
$$

Forest succession:

	Gray Birch	Blackgum	Red Maple	Beech
Gray Birch	0.05	0.01	0	0
Blackgum	0.36	0.57	0.14	0.01
Red Maple	0.5	0.25	0.55	0.03
Beech	0.09	0.17	0.31	0.96

For example, the fraction of Red Maple trees after 50 years would be $0.5 \times$ the fraction of Gray Birch trees, plus $0.25 \times$ the fraction of Blackgum trees, plus $0.55 \times$ the fraction of Red Maples, plus $0.03 \times$ the fraction of Beech trees.

Write table as a matrix:

$$
A=\left(\begin{array}{cccc}
0.05 & 0.01 & 0 & 0 \\
0.36 & 0.57 & 0.14 & 0.01 \\
0.5 & 0.25 & 0.55 & 0.03 \\
0.09 & 0.17 & 0.31 & 0.96
\end{array}\right)
$$

and define the current state of the forest as a vector, e.g.,

$$
\vec{V}_{0}=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)
$$

After 50 years the next state of the forest is defined by:

$$
\overrightarrow{V_{50}}=A \vec{V}_{0}=\left(\begin{array}{llll}
0.05 & 0.36 & 0.5 & 0.09
\end{array}\right)
$$

which is a forest with 5\% Gray Birch, 36% Blackgum, 50% Red Maple, and 9\% Beech trees.

The next state of the forest is

$$
\overrightarrow{V_{100}}=A \overrightarrow{V_{50}}=\left(\begin{array}{llll}
0.0061 & 0.2941 & 0.3927 & 0.3071
\end{array}\right)
$$

After 100 intervals of 50 years, the state is $V_{5000}=A^{100} \overrightarrow{V_{0}}$, where

$$
A^{100}=\left(\begin{array}{ccccc}
0.005 & 0.005 & 0.005 & 0.005 \\
0.048 & 0.048 & 0.048 & 0.048 \\
0.085 & 0.085 & 0.085 & 0.085 \\
0.866 & 0.866 & 0.866 & 0.866
\end{array}\right)
$$

which is a matrix with identical columns.

Now consider an arbitrary vector $\vec{V}=(x y z w)$, where $w=1-$ $x-y-z$, and notice that $A^{100} \vec{V}=$

$$
\left(\begin{array}{cccc}
0.005 & 0.005 & 0.005 & 0.005 \\
0.048 & 0.048 & 0.048 & 0.048 \\
0.085 & 0.085 & 0.085 & 0.085 \\
0.866 & 0.866 & 0.866 & 0.866
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
0.005(x+y+z+w) \\
0.048(x+y+z+w) \\
0.085(x+y+z+w) \\
0.866(x+y+z+w)
\end{array}\right)=
$$

(0.005 0.048 0.085 0.866), the succession converges into climax state.

This climax vector is an eigenvector of the matrix A !

Left panel the Horn model, right panel transform ($\left.\begin{array}{ll}0 & 1\end{array}\right)$ with $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$, and go on. R-scripts: horn.R and eigen.R

Eigenvalue problem: $A \vec{v}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}$

$$
\left\{\begin{array} { l }
{ a x + b y = \lambda x } \\
{ c x + d y = \lambda y }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
(a-\lambda) x+b y=0 \\
c x+(d-\lambda) y=0
\end{array}\right.\right.
$$

Multiply first with $(d-\lambda)$, and second with b :

$$
\left\{\begin{aligned}
(d-\lambda)[(a-\lambda) x+b y] & =0 \\
b[c x+(d-\lambda) y] & =0
\end{aligned}\right.
$$

Subtract second from first:

$$
[(d-\lambda)(a-\lambda)-b c] x=0
$$

Because $x \neq 0$:

$$
(d-\lambda)(a-\lambda)-b c=0
$$

Characteristic equation:

$$
\lambda^{2}-(a+d) \lambda+(a d-b c)=0
$$

Since $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, this can be written as:

$$
\lambda^{2}-\operatorname{tr} \lambda+\operatorname{det}=0
$$

Hence:

$$
\lambda_{1,2}=\frac{\operatorname{tr} \pm \sqrt{\operatorname{tr}^{2}-4 \operatorname{det}}}{2}
$$

revealing the importance of the trace of a matrix.

Numerical example:

$$
\begin{gathered}
A \vec{v}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y} \\
\operatorname{tr}[A]=2 \text { and } \operatorname{det}[A]=1-4=-3
\end{gathered}
$$

Characteristic equation:

$$
\lambda_{1,2}=\frac{\operatorname{tr} \pm \sqrt{\operatorname{tr}^{2}-4 \operatorname{det}}}{2}=\frac{2 \pm \sqrt{4+12}}{2}=\frac{2 \pm 4}{2}
$$

Hence:

$$
\lambda_{1}=3 \quad \text { and } \quad \lambda_{2}=-1
$$

Corresponding eigenvectors:

$$
\left\{\begin{array} { l }
{ (a - \lambda) x + b y = 0 } \\
{ c x + (d - \lambda) y = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=\frac{\lambda-a}{b} x \\
x=\frac{\lambda-d}{c} y
\end{array}\right.\right.
$$

First eigenvector $\lambda_{1}=3, a=1, b=2, c=2, d=1$:

$$
y=\frac{3-1}{2} x=x \quad \text { and } \quad x=\frac{3-1}{2} y=y \quad \text { hence } \quad \overrightarrow{v_{1}}=\binom{1}{1}
$$

Second eigenvector $\lambda_{2}=-1, a=1, b=2, c=2, d=1$:
$y=\frac{-1-1}{2} x=-x \quad$ and $\quad x=\frac{-1-1}{2} y=-y \quad$ hence $\quad \overrightarrow{v_{2}}=\binom{-1}{1}$
We only need one of the two equations!

Indeed, general case for eigenvectors:

$$
\left\{\begin{array}{l}
(a-\lambda) x+b y=0 \\
c x+(d-\lambda) y=0
\end{array}\right.
$$

First equation delivers: $\binom{x}{y}=\binom{-b}{a-\lambda}$
Indeed, second equals zero (delivers characteristic equation):

$$
-b c+(d-\lambda)(a-\lambda)=0
$$

Thus, $\lambda_{1}=3, a=1, b=2: \overrightarrow{v_{1}}=\binom{-2}{-2} \quad$ or $\quad \overrightarrow{v_{1}}=\binom{1}{1}$
for $\lambda_{2}=-1, a=1, b=2: \overrightarrow{v_{2}}=\binom{-2}{1--1} \quad$ or $\quad \overrightarrow{v_{2}}=\binom{-1}{1}$

Special case, diagonal matrix: $A=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ or $A=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$
Characteristic equation:

$$
(a-\lambda)(d-\lambda)-b c=0 \quad \leftrightarrow \quad(a-\lambda)(d-\lambda)-0=0
$$

Hence, the eigenvalues correspond to the diagonal elements:

$$
\lambda_{1}=a \quad \text { and } \quad \lambda_{2}=d
$$

Off-diagonal matrix:
$A=\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right): \quad(0-\lambda)(0-\lambda)-b c=0 \quad \leftrightarrow \quad \lambda_{1,2}= \pm \sqrt{b c}$

