Chapter 8: Modeling chains of ODEs

$$
\begin{aligned}
& \frac{\mathrm{d} R}{\mathrm{~d} t}=[r(1-R / K)-b N] R, \frac{\mathrm{~d} N}{\mathrm{~d} t}=[b R-d-c M] N \quad \text { and } \quad \frac{\mathrm{d} M}{\mathrm{~d} t}=[c N-e] M \\
& n=1 \quad \bar{R}=K \\
& n=2 \quad \bar{R}=\frac{d}{b} \quad \text { and } \quad \bar{N}=\frac{r}{b}\left(1-\frac{d}{b K}\right)=\frac{r}{b}\left(1-\frac{1}{R_{0}}\right)
\end{aligned}
$$

Modeling chains of ODEs

$$
\begin{aligned}
& \frac{\mathrm{d} R}{\mathrm{~d} t}=[r(1-R / K)-b N] R, \frac{\mathrm{~d} N}{\mathrm{~d} t}=[b R-d-c M] N \quad \text { and } \quad \frac{\mathrm{d} M}{\mathrm{~d} t}=[c N-e] M \\
& n=1 \quad \bar{R}=K \\
& n=2 \quad \bar{R}=\frac{d}{b} \quad \text { and } \quad \bar{N}=\frac{r}{b}\left(1-\frac{d}{b K}\right)=\frac{r}{b}\left(1-\frac{1}{R_{0}}\right) \\
& R_{0}^{\prime}=\frac{c r}{b e} \\
& n=3 \quad \bar{N}=\frac{e^{\prime}}{c}, \bar{R}=K\left(1-\frac{b e}{c r}\right) \quad \text { and } \quad \bar{M}=\frac{b \bar{R}-d}{c}
\end{aligned}
$$

For odd chain lengths R depends on K

Modeling chains of ODEs

$$
\frac{\mathrm{d} R}{\mathrm{~d} t}=[r(1-R / K)-b N] R, \frac{\mathrm{~d} N}{\mathrm{~d} t}=[b R-d-c M] N \quad \text { and } \quad \frac{\mathrm{d} M}{\mathrm{~d} t}=[c N-e] M
$$

Kaunzinger \& Morin, Nature, 1998

Modeling chains with saturated interaction terms

$$
\begin{gathered}
\frac{\mathrm{d} R}{\mathrm{~d} t}=\left[r\left(1-\frac{R}{K}\right)-\frac{b N}{h_{R}+R}\right] R, \quad \frac{\mathrm{~d} N}{\mathrm{~d} t}=\left[\frac{b R}{h_{R}+R}-d-\frac{c M}{h_{N}+N}\right] N, \text { and } \frac{\mathrm{d} M}{\mathrm{~d} t}=\left[\frac{c N}{h_{N}+N}-e\right] M \\
\frac{f_{N}: \text { in absence of M no } N}{\mathrm{~d} R} \mathrm{f}=\left[r\left(1-\frac{R}{K}\right)-\frac{b N}{h_{R}+R+N}\right] R, \quad \frac{\mathrm{~d} N}{\mathrm{~d} t}=\left[\frac{b R}{h_{R}+R+N}-d-\frac{c M}{h_{N}+N+M}\right] N \quad \text { and } \quad \frac{\mathrm{d} M}{\mathrm{~d} t}=\left[\frac{c N}{h_{N}+N+M}-e\right] M
\end{gathered}
$$

Per capita function always depends on variable itself.

$$
a X Y \simeq \frac{a X Y}{1+X / k+Y / k} \quad \text { when } k \text { is large }
$$

Modeling chains with Beddington interaction terms

(d)

(e)

(c)

(f)

Other famous chains don't suffer from this problem

SEIR model:
$\frac{\mathrm{d} S}{\mathrm{~d} t}=s-d S-\beta S I, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=\beta S I-(d+\gamma) E, \quad \frac{\mathrm{~d} I}{\mathrm{~d} t}=\gamma E-(\delta+r) I \quad$ and $\frac{\mathrm{d} R}{\mathrm{~d} t}=r I-d R$
$\bar{R}=\frac{r}{d} \bar{I}, \quad \bar{I}=\frac{1}{\delta+r} \bar{E}^{4}, \quad \bar{S}=\frac{(d+\gamma)(\delta+r)}{\gamma \beta}, \quad \bar{E}=\frac{s}{d+\gamma}-\frac{d(\delta+r)}{\gamma \beta}$
\bar{R} and \bar{l} are proportional to previous level

Cascade of cell divisions

$$
\begin{gathered}
\frac{\mathrm{d} N_{0}}{\mathrm{~d} t}=s-(p+d) N_{0}, \quad \frac{\mathrm{~d} N_{i}}{\mathrm{~d} t}=2 p N_{i-1}-(p+d) N_{i} \quad \text { and } \quad \frac{\mathrm{d} N_{n}}{\mathrm{~d} t}=2 p N_{n-1}-d N_{n} \\
\bar{N}_{0}=\frac{s}{p+d}, \quad \bar{N}_{i}=\frac{2 p}{p+d} \bar{N}_{i-1} \quad \text { and } \quad \bar{N}_{n}=\frac{2 p}{d} \bar{N}_{n-1} \\
J=\left(\begin{array}{ccccccc}
-(p+d) & 0 & 0 & 0 & \ldots & \ldots & 0 \\
2 p & -(p+d) & 0 & 0 & \cdots & \cdots & 0 \\
0 & 2 p & -(p+d) & 0 & \cdots & \cdots & 0 \\
0 & \ldots & \vdots & & \\
0 & \ldots & 0 & 2 p & -d
\end{array}\right) \\
\left(J_{00}-\lambda\right)\left(J_{11}-\lambda\right)\left(J_{22}-\lambda\right) \ldots\left(J_{n n}-\lambda\right)=0
\end{gathered}
$$

Solve eigenvalues from determinant (product diagonal elements)

Cascade of cell divisions

$$
\begin{gathered}
\frac{\mathrm{d} N_{0}}{\mathrm{~d} t}=s-(p+d) N_{0}, \quad \frac{\mathrm{~d} N_{i}}{\mathrm{~d} t}=2 p N_{i-1}-(p+d) N_{i} \quad \text { and } \quad \frac{\mathrm{d} N_{n}}{\mathrm{~d} t}=2 p N_{n-1}-d N_{n} \\
\bar{N}_{0}=\frac{s}{p+d}, \quad \bar{N}_{i}=\frac{2 p}{p+d} \bar{N}_{i-1} \quad \text { and } \quad \bar{N}_{n}=\frac{2 p}{d} \bar{N}_{n-1} \\
\bar{N}_{0}=\frac{s}{p+d}, \quad \bar{N}_{i}=\frac{2^{i} p^{i} s}{(p+d)^{i+1}} \quad \text { and } \quad \bar{N}_{n}=\frac{s}{d}\left(\frac{2 p}{p+d}\right)^{n}
\end{gathered}
$$

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=-a Q-d_{Q} Q+d \sum f_{i} N_{i} \quad \text { and } \quad s=a Q
$$

Chaos in a 3D food chain

$$
\begin{gathered}
\frac{\mathrm{d} R}{\mathrm{~d} t}=R(1-R)-c_{1} N f(R) \\
\frac{\mathrm{d} N}{\mathrm{~d} t}=-a_{N} N+c_{1} N f(R)-c_{2} M g(N) \\
\frac{\mathrm{d} M}{\mathrm{~d} t}=-a_{M} M+c_{2} M g(N)
\end{gathered}
$$

Kinetic proofreading: last exercise

Michaelis Menten:
$F+L \underset{k_{-1}}{\stackrel{k_{1}}{=}} C \quad$ or $\quad \frac{\mathrm{d} C}{\mathrm{~d} t}=k_{1} F L-k_{-1} C \quad$ with $\quad F=R-C \quad$ gives $\quad C=\frac{R L}{K_{m}+L}$
Kinetic proofreading:

$$
\begin{aligned}
& F+L \underset{k-1}{\stackrel{k_{1}}{\rightleftharpoons}} C_{0}, \quad C_{i-1} \xrightarrow{k_{2}} C_{i} \quad \text { and } \quad C_{i} \xrightarrow{k_{-1}} F \\
& \frac{\mathrm{~d} C_{0}}{\mathrm{~d} t}=k_{1} F L-\left(k_{-1}+k_{2}\right) C_{0}, \quad \frac{\mathrm{~d} C_{i}}{\mathrm{~d} t}=k_{2} C_{i-1}-\left(k_{-1}+k_{2}\right) C_{i} \quad \text { and } \quad \frac{\mathrm{d} C_{n}}{\mathrm{~d} t}=k_{2} C_{n-1}-k_{-1} C_{n} \\
& \text { with } F=R-\sum_{i}^{n} C_{i} \text { gives } \bar{C}_{n}=\frac{R L}{K_{m}+L}\left(\frac{k_{2}}{k_{-1}+k_{2}}\right)^{n}
\end{aligned}
$$

When $k_{-1} \ll k_{2}$ similar to Michaelis Menten, otherwise discrimination

Kinetic proofreading: last exercise

$$
\begin{aligned}
& F+L \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} C_{0}, \quad C_{i-1} \xrightarrow[\rightarrow]{k_{2}} C_{i} \quad \text { and } \quad C_{i} \xrightarrow{k_{-1}} F \text { where } F=R-C \\
& \frac{\mathrm{~d} C_{0}}{\mathrm{~d} t}=k_{1} F L-\left(k_{-1}+k_{2}\right) C_{0}, \quad \frac{\mathrm{~d} C_{i}}{\mathrm{~d} t}=k_{2} C_{i-1}-\left(k_{-1}+k_{2}\right) C_{i} \quad \text { and } \quad \frac{\mathrm{d} C_{n}}{\mathrm{~d} t}=k_{2} C_{n-1}-k_{-1} C_{n} \\
& \underbrace{\infty}_{n} \\
& \text { High } \quad \bar{C}_{n}=\frac{R L}{K_{m}+L}\left(\frac{k_{2}}{k_{-1}+k_{2}}\right)^{n} \\
& \text { affinity }
\end{aligned}
$$

