SIR model: Virulence: $v = \delta - d$ $\mathbf{2}$

Chapter 6: R₀

R₀ can also be computed from Jacobian

 $\lambda_1 < 0$ same as $R_0 > 1$

 $\frac{\mathrm{d}S}{\mathrm{d}t} = s - dS - \beta SI , \quad \frac{\mathrm{d}I}{\mathrm{d}t} = \beta SI - (\delta + r)I , \quad \text{and} \quad \frac{\mathrm{d}R}{\mathrm{d}t} = rI - dR ,$ $R_0 = \beta \bar{S} \ \frac{1}{\delta + r} = \frac{s}{d} \ \frac{\beta}{\delta + r} \qquad \text{SI model (I=0): } J = \begin{pmatrix} -d & -\beta \bar{S} \\ 0 & \beta \bar{S} - \delta - r \end{pmatrix}$ 1 $\lambda_1 = \beta \overline{S} - \delta - r \text{ and } \lambda_2 = -d.$

 R_0 is not equal to the growth SIR model:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = s - dS - \beta SI , \quad \frac{\mathrm{d}I}{\mathrm{d}t} = \beta SI - (\delta + r)I , \quad \text{and} \quad \frac{\mathrm{d}R}{\mathrm{d}t} = rI - dR , \quad R_0 = \beta \bar{S} \frac{1}{\delta + r} = \frac{s}{d} \frac{1}{\delta + r}$$

Initial expansion rate $(r_0 > 0)$:

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta \bar{S}I - (\delta + r)I = \left(\frac{\beta s}{d} - \delta - r\right)I = r_0 I ,$$

R₀ is not equal to the growth/expansion rate of the epidemic

$$\lambda_1 = \beta \bar{S} - \delta$$

Initial expansion rate ($\rho_0 > 0$): $\frac{\mathrm{d}I}{\mathrm{d}t} = \beta \bar{S}I - (\delta + r)I = \left(\frac{\beta s}{d} - \delta - r\right)I = \rho_0 I$

$$R_0 = \beta \bar{S}L$$
 and $\rho_0 = \beta \bar{S} - \frac{1}{L}$ such

From the latter: $R_0 - 1$ _____**T**

where the hold $\beta \overline{S} = \rho_0 + \frac{1}{L}$ and $R_0 = \rho_0 L + 1$

$$= (R_0 - 1)(\delta + r)$$

Frequency dependent infections

SIR model:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = s - dS - \beta SI , \quad \frac{\mathrm{d}I}{\mathrm{d}t} = \beta SI - (\delta + r)I , \quad \text{and} \quad \frac{\mathrm{d}R}{\mathrm{d}t} = rI - dR$$
$$R_0 = \frac{s}{d}\frac{\beta}{\delta + r}$$

Frequency dependent infection in SIR model: N = S + I + R

$$\frac{\mathrm{d}S}{\mathrm{d}t} = s - dS - \frac{\beta SI}{N} , \quad \frac{\mathrm{d}I}{\mathrm{d}t} = \frac{\beta SI}{N} - (\delta + r)I , \quad \text{and} \quad \frac{\mathrm{d}R}{\mathrm{d}t} = rI - dR$$
$$R_0 = \frac{\beta}{\delta + r}$$

)

)

 $R_0 > 1$ is the same as l > 0

SEIR model

det J < 0 or $\frac{d}{s} \frac{\gamma + d}{\gamma} \frac{\delta + r}{\beta} - 1 < 0 \quad \leftrightarrow \quad \frac{1}{R_0} < 1 \quad \leftrightarrow \quad R_0 > 1$

SEIR model $R_0 = \frac{s}{d} \frac{\beta}{\delta + r} \frac{\gamma}{\gamma + d}$.

tr < 0 and det = $(\gamma + d)(\delta + r) - \gamma\beta S$

	_		
_			
_		_	

Fitness in consumer-resource models

$$\frac{\mathrm{d}R}{\mathrm{d}t} = bR(1 - R/k) - dR - dR$$
$$K = k(1 - d/b) \quad R_{0R} = k(1 - d/b) \quad R_{0R} = k(1 - d/b)$$

 $\frac{\mathrm{d}R}{\mathrm{d}t} = bR(1 - R/k) - dR - aRN \quad \text{and} \quad \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\beta RN}{h+R} - \delta N$

aRN and $\frac{\mathrm{d}N}{\mathrm{d}t} = caRN - \delta N$ = b/d. $R_{0_N} = caK/\delta$

 $R_0 = \frac{\beta K}{\delta(h+K)}$ 5 or $R_0 = \beta/\delta$ K = k(1 - d/b)