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Chapter 5

Killing and consumption

In Chapter 3 we have written models for density-dependent population growth by allowing the
birth rate to decline as a function of the population density, and/or the death rate increase
with the population density. Such models tend to be simplifications because density-dependent
e↵ects typically operate indirectly via other variables, and not by direct contacts between the
individuals. For example, we have written a model for density-dependent production of red
blood cells with a production term that decreases as a function of the density of red blood cells.
In reality this depended on the production of EPO produced by cells in the kidney, which in turn
depended on their oxygenation, which finally depended on the red blood cell density. Another
example is the density-dependent growth of a population of bacteria, which typically operates
via the depletion of resources, or via the production of toxins, at high bacterial densities. An
example where direct competition would be mechanistic is the slowing down of cell-division by
“contact inhibition” when cells become surrounded by other cells in growing cell cultures or
organs.

To explicitly allow for the factors mediating the density-dependence we have to extend our
models with variables representing these factors. Classical examples are bacteria or algae re-
quiring and consuming nutrients. Because at high population densities the resource availability
decreases by this consumption, one naturally obtains a density-dependence that will ultimately
limit the total population size. A simple example would be a population of cells growing in a
closed environment, requiring a certain nutrient for successful cell division. If this nutrient be-
comes freely available upon cell death, one could write a conservation equation for the resource,
RT = R + cN , where RT is the fixed total density of resource in the closed environment, cN
is the amount of resource contained in the N cells of the population, and R is the amount of
resources that is freely available. Writing the rate of cell-division as a saturation function of the
available resource density, one would obtain something like,

dN

dt
=

bRN

h+R
� �N =

b(RT � cN)N

h+RT � cN
� �N = bN

⇣
1� h

h+RT � cN

⌘
� �N , (5.1)

where b is the maximum division rate, h the resource density at which the cells divide at half
their maximal rate, and � is the death rate of the cells. For this simple case we therefore re-
obtain an ODE where the population birth is limited directly by the population density, but
note that none of the models in Chapter 3 resembles Eq. (5.1).

To generally extend our model with a dynamic resource that is limiting population growth, we
need to write an ODE for the resource, with a production and a loss term, we need to define a
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Bacteria in a chemostat: birth rate proportional to consumption aR
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functional form for the consumption rate, and we need to define how the birth and/or death rate
of the population depends on the amount of resources consumed. We will treat each of these
terms separately, and, whenever needed, sketch simple functions to define the form of interaction
terms.

5.1 Bacteria in chemostats

First consider bacteria growing in a chemostat with a fixed influx of fluid containing nutrients,
and a constant outflow of fluid containing nutrients and bacteria. In the absence of bacteria one
would write dR/dt = s�wR, where R (for resource) is the concentration of the nutrient in the
chemostat, s is the rate of influx (e.g., in moles per hour), and w is the rate of e✏ux (then also
per hour). Some time after initializing the chemostat, the nutrient concentration approaches
the steady state R̄ = s/w.

When the maximum nutrient levels remain su�ciently low, e.g., if the source s is small, one can
safely assume that the rate at which bacteria take up nutrients remains proportional to R, i.e.,
a sketch of the per capita consumption rate as a function of R would be a straight line through
the origin with slope a. Writing N for the density of bacteria, and a for the rate of uptake of
nutrients per bacterium per hour, one would write

dR

dt
= s� wR� aRN . (5.2)

If the division rate of the bacteria is limited by nutrients, and if this were to remain proportional
to their per capita uptake, aR, at these low nutrient levels, one would write

dN

dt
= caRN � (w + d)N = caRN � �N , (5.3)

where caR is the per capita birth rate (increasing linearly with aR), w remains the rate of
wash-out from the chemostat, d is the death rate of the bacteria (per hour), and � = w + d.
Seeding a chemostat at steady state, R̄ = s

w
, with some bacteria will lead to bacterial growth

whenever their R0 =
caR̄

�
= cas

�w
> 1.

The properties of this 2-dimensional model can be analyzed by sketching nullclines and com-
puting the steady state(s). Starting with the latter we observe that in the presence of bacteria,
the steady state resource density is solved by setting dN/dt = 0 in Eq. (5.3). Cancelling the
trivial N = 0 solution that we already considered above, this leads to R̄ = �

ca
. This calculation

also reveals that the dN/dt = 0 nullcline consists of two straight lines in the phase plane, one
corresponding to the line N = 0, and the other to the line R = �

ca
. To proceed with the steady

state we solve N from dR/dt = 0 in Eq. (5.2),

N =
s

aR
� w

a
and, after substituting R =

�

ca
, N̄ =

sc

�
� w

a
. (5.4)

The former expression gives the dR/dt = 0 nullcline, and the latter the “carrying capacity” of
the bacteria in a chemostat with source s and loss rate � = w+ d. The model therefore has two
steady states: the trivial (R̄, N̄) = ( s

w
, 0) and the non-trivial (R̄, N̄) = ( �

ca
,
sc

�
� w

a
).

To study the stability of these steady state we perform phase plane analysis. Since the dR/dt = 0
nullcline is expressed a function N = f(R), and the dN/dt = 0 nullclines are simple straight lines
at fixed R = R̄ or N = 0 values, we define the vertical axis of the phase plane by the bacteria
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Figure 5.1: Bacterial growth in a chemostat. In Panels (a) and (b) the curved red lines depict the
dR/dt = 0 nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect in a stable
steady state (as indicated by the solid symbol) located at (R,N) = (R̄, N̄). The black line in Panel (b)
is a trajectory corresponding to the introduction of a few bacteria into a chemostat at the trivial steady
state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the bacterial growth
curve looks like a sigmoid logistic growth process. This figure was made with the model chemo.R.

and the horizontal axis by the resource (see Fig. 5.1) The dR/dt = 0 nullcline, N = s

aR
� w

a
, has

a vertical asymptote when R = 0, a horizontal asymptote N = �w

a
when R ! 1, and intersects

the horizontal axis at the trivial resource density, R = s/w (see Fig. 5.1a). For the vector field
one could start close to the origin, (R,N) ' (0, 0), where dR/dt > 0 because s > wR and
dN/dt < 0 because caR < � (see the arrows in the bottom-left corner). Flipping the horizontal
arrows at the dR/dt = 0 nullcline, and the vertical arrows at the dN/dt = 0 nullcline, the vector
field can be completed for every qualitatively di↵erent region in the phase space. One may
double-check that dR/dt < 0 and dN/dt > 0 in the upper-right corner, where s < dR � aRN

and caR > �. Finally, note that the location of the bacterial nullcline, R = R
⇤ = �

ca
, corresponds

to the critical resource required for bacterial growth (Tilman, 1980, 1982), and that the nullclines
will only intersect when s

w
> R

⇤.

In Fig. 5.1a the steady state ( s

w
, 0) without bacteria is unstable because the vertical vectors are

pointing away from it (actually, it is a saddle-point because the horizontal vectors are pointing
towards it). Indeed, introducing bacteria into this state is expected to lead to bacterial growth
(because s

w
> R

⇤). To determine the stability of the non-trivial steady state we have to linearize
the system to compute the Jacobi matrix. We write the two ODEs in Eq. (5.2) and (5.3) as two
normal functions, f(R,N) = s�wR�aRN and g(R,N) = caRN � �N , determine their partial
derivatives, and subsequently substitute the steady state values:
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@Rf @Nf
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◆

|(R̄,N̄)
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✓
�w � aN̄ �aR̄
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�w � aN̄ ��/c
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◆
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✓
�↵ ��

+� 0

◆
,

(5.5)
where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = 0 � ��� = �� > 0, both eigenvalues will be negative (i.e., have a
negative real part). We therefore conclude that the non-trivial steady state is stable (see the
accompanying Ebook (Panfilov et al., 2016)). Note that we can also read of the signs of this
Jacobian from the vector field. The local e↵ect of R on dR/dt = f(R,N) is given by the negative
arrow on the right side of the steady state, the negative e↵ect of N on dR/dt = f(R,N) is given
by the negative arrow above the steady state, the positive e↵ect of R on dN/dt = g(R,N) is
given by the positive arrow on the right side of the steady state, and the null e↵ect of N on
dN/dt = g(R,N) is revealed by the fact that g(R,N) = 0 above the steady state. A population
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chemostat, s is the rate of influx (e.g., in moles per hour), and w is the rate of e✏ux (then also
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the steady state R̄ = s/w.
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safely assume that the rate at which bacteria take up nutrients remains proportional to R, i.e.,
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is a trajectory corresponding to the introduction of a few bacteria into a chemostat at the trivial steady
state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the bacterial growth
curve looks like a sigmoid logistic growth process. This figure was made with the model chemo.R.
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the horizontal axis at the trivial resource density, R = s/w (see Fig. 5.1a). For the vector field
one could start close to the origin, (R,N) ' (0, 0), where dR/dt > 0 because s > wR and
dN/dt < 0 because caR < � (see the arrows in the bottom-left corner). Flipping the horizontal
arrows at the dR/dt = 0 nullcline, and the vertical arrows at the dN/dt = 0 nullcline, the vector
field can be completed for every qualitatively di↵erent region in the phase space. One may
double-check that dR/dt < 0 and dN/dt > 0 in the upper-right corner, where s < dR � aRN

and caR > �. Finally, note that the location of the bacterial nullcline, R = R
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ca
, corresponds

to the critical resource required for bacterial growth (Tilman, 1980, 1982), and that the nullclines
will only intersect when s
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In Fig. 5.1a the steady state ( s

w
, 0) without bacteria is unstable because the vertical vectors are

pointing away from it (actually, it is a saddle-point because the horizontal vectors are pointing
towards it). Indeed, introducing bacteria into this state is expected to lead to bacterial growth
(because s

w
> R

⇤). To determine the stability of the non-trivial steady state we have to linearize
the system to compute the Jacobi matrix. We write the two ODEs in Eq. (5.2) and (5.3) as two
normal functions, f(R,N) = s�wR�aRN and g(R,N) = caRN � �N , determine their partial
derivatives, and subsequently substitute the steady state values:
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where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = 0 � ��� = �� > 0, both eigenvalues will be negative (i.e., have a
negative real part). We therefore conclude that the non-trivial steady state is stable (see the
accompanying Ebook (Panfilov et al., 2016)). Note that we can also read of the signs of this
Jacobian from the vector field. The local e↵ect of R on dR/dt = f(R,N) is given by the negative
arrow on the right side of the steady state, the negative e↵ect of N on dR/dt = f(R,N) is given
by the negative arrow above the steady state, the positive e↵ect of R on dN/dt = g(R,N) is
given by the positive arrow on the right side of the steady state, and the null e↵ect of N on
dN/dt = g(R,N) is revealed by the fact that g(R,N) = 0 above the steady state. A population
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functional form for the consumption rate, and we need to define how the birth and/or death rate
of the population depends on the amount of resources consumed. We will treat each of these
terms separately, and, whenever needed, sketch simple functions to define the form of interaction
terms.

5.1 Bacteria in chemostats

First consider bacteria growing in a chemostat with a fixed influx of fluid containing nutrients,
and a constant outflow of fluid containing nutrients and bacteria. In the absence of bacteria one
would write dR/dt = s�wR, where R (for resource) is the concentration of the nutrient in the
chemostat, s is the rate of influx (e.g., in moles per hour), and w is the rate of e✏ux (then also
per hour). Some time after initializing the chemostat, the nutrient concentration approaches
the steady state R̄ = s/w.

When the maximum nutrient levels remain su�ciently low, e.g., if the source s is small, one can
safely assume that the rate at which bacteria take up nutrients remains proportional to R, i.e.,
a sketch of the per capita consumption rate as a function of R would be a straight line through
the origin with slope a. Writing N for the density of bacteria, and a for the rate of uptake of
nutrients per bacterium per hour, one would write

dR

dt
= s� wR� aRN . (5.2)

If the division rate of the bacteria is limited by nutrients, and if this were to remain proportional
to their per capita uptake, aR, at these low nutrient levels, one would write

dN

dt
= caRN � (w + d)N = caRN � �N , (5.3)

where caR is the per capita birth rate (increasing linearly with aR), w remains the rate of
wash-out from the chemostat, d is the death rate of the bacteria (per hour), and � = w + d.
Seeding a chemostat at steady state, R̄ = s

w
, with some bacteria will lead to bacterial growth

whenever their R0 =
caR̄

�
= cas
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> 1.

The properties of this 2-dimensional model can be analyzed by sketching nullclines and com-
puting the steady state(s). Starting with the latter we observe that in the presence of bacteria,
the steady state resource density is solved by setting dN/dt = 0 in Eq. (5.3). Cancelling the
trivial N = 0 solution that we already considered above, this leads to R̄ = �

ca
. This calculation

also reveals that the dN/dt = 0 nullcline consists of two straight lines in the phase plane, one
corresponding to the line N = 0, and the other to the line R = �

ca
. To proceed with the steady

state we solve N from dR/dt = 0 in Eq. (5.2),

N =
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The former expression gives the dR/dt = 0 nullcline, and the latter the “carrying capacity” of
the bacteria in a chemostat with source s and loss rate � = w+ d. The model therefore has two
steady states: the trivial (R̄, N̄) = ( s
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, 0) and the non-trivial (R̄, N̄) = ( �
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,
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).

To study the stability of these steady state we perform phase plane analysis. Since the dR/dt = 0
nullcline is expressed a function N = f(R), and the dN/dt = 0 nullclines are simple straight lines
at fixed R = R̄ or N = 0 values, we define the vertical axis of the phase plane by the bacteria
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Figure 5.1: Bacterial growth in a chemostat. In Panels (a) and (b) the curved red lines depict the
dR/dt = 0 nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect in a stable
steady state (as indicated by the solid symbol) located at (R,N) = (R̄, N̄). The black line in Panel (b)
is a trajectory corresponding to the introduction of a few bacteria into a chemostat at the trivial steady
state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the bacterial growth
curve looks like a sigmoid logistic growth process. This figure was made with the model chemo.R.

and the horizontal axis by the resource (see Fig. 5.1) The dR/dt = 0 nullcline, N = s

aR
� w

a
, has

a vertical asymptote when R = 0, a horizontal asymptote N = �w

a
when R ! 1, and intersects

the horizontal axis at the trivial resource density, R = s/w (see Fig. 5.1a). For the vector field
one could start close to the origin, (R,N) ' (0, 0), where dR/dt > 0 because s > wR and
dN/dt < 0 because caR < � (see the arrows in the bottom-left corner). Flipping the horizontal
arrows at the dR/dt = 0 nullcline, and the vertical arrows at the dN/dt = 0 nullcline, the vector
field can be completed for every qualitatively di↵erent region in the phase space. One may
double-check that dR/dt < 0 and dN/dt > 0 in the upper-right corner, where s < dR � aRN

and caR > �. Finally, note that the location of the bacterial nullcline, R = R
⇤ = �

ca
, corresponds

to the critical resource required for bacterial growth (Tilman, 1980, 1982), and that the nullclines
will only intersect when s

w
> R

⇤.

In Fig. 5.1a the steady state ( s

w
, 0) without bacteria is unstable because the vertical vectors are

pointing away from it (actually, it is a saddle-point because the horizontal vectors are pointing
towards it). Indeed, introducing bacteria into this state is expected to lead to bacterial growth
(because s

w
> R

⇤). To determine the stability of the non-trivial steady state we have to linearize
the system to compute the Jacobi matrix. We write the two ODEs in Eq. (5.2) and (5.3) as two
normal functions, f(R,N) = s�wR�aRN and g(R,N) = caRN � �N , determine their partial
derivatives, and subsequently substitute the steady state values:

J =
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@Rf @Nf
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=

✓
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(5.5)
where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = 0 � ��� = �� > 0, both eigenvalues will be negative (i.e., have a
negative real part). We therefore conclude that the non-trivial steady state is stable (see the
accompanying Ebook (Panfilov et al., 2016)). Note that we can also read of the signs of this
Jacobian from the vector field. The local e↵ect of R on dR/dt = f(R,N) is given by the negative
arrow on the right side of the steady state, the negative e↵ect of N on dR/dt = f(R,N) is given
by the negative arrow above the steady state, the positive e↵ect of R on dN/dt = g(R,N) is
given by the positive arrow on the right side of the steady state, and the null e↵ect of N on
dN/dt = g(R,N) is revealed by the fact that g(R,N) = 0 above the steady state. A population
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is a trajectory corresponding to the introduction of a few bacteria into a chemostat at the trivial steady
state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the bacterial growth
curve looks like a sigmoid logistic growth process. This figure was made with the model chemo.R.
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state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the bacterial growth
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dN/dt < 0 because caR < � (see the arrows in the bottom-left corner). Flipping the horizontal
arrows at the dR/dt = 0 nullcline, and the vertical arrows at the dN/dt = 0 nullcline, the vector
field can be completed for every qualitatively di↵erent region in the phase space. One may
double-check that dR/dt < 0 and dN/dt > 0 in the upper-right corner, where s < dR � aRN

and caR > �. Finally, note that the location of the bacterial nullcline, R = R
⇤ = �

ca
, corresponds

to the critical resource required for bacterial growth (Tilman, 1980, 1982), and that the nullclines
will only intersect when s

w
> R

⇤.

In Fig. 5.1a the steady state ( s

w
, 0) without bacteria is unstable because the vertical vectors are

pointing away from it (actually, it is a saddle-point because the horizontal vectors are pointing
towards it). Indeed, introducing bacteria into this state is expected to lead to bacterial growth
(because s

w
> R

⇤). To determine the stability of the non-trivial steady state we have to linearize
the system to compute the Jacobi matrix. We write the two ODEs in Eq. (5.2) and (5.3) as two
normal functions, f(R,N) = s�wR�aRN and g(R,N) = caRN � �N , determine their partial
derivatives, and subsequently substitute the steady state values:

J =

✓
@Rf @Nf

@Rg @Ng

◆

|(R̄,N̄)

=

✓
�w � aN̄ �aR̄

caN̄ caR̄� �

◆
=

✓
�w � aN̄ ��/c

caN̄ 0

◆
=

✓
�↵ ��

+� 0

◆
,

(5.5)
where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = 0 � ��� = �� > 0, both eigenvalues will be negative (i.e., have a
negative real part). We therefore conclude that the non-trivial steady state is stable (see the
accompanying Ebook (Panfilov et al., 2016)). Note that we can also read of the signs of this
Jacobian from the vector field. The local e↵ect of R on dR/dt = f(R,N) is given by the negative
arrow on the right side of the steady state, the negative e↵ect of N on dR/dt = f(R,N) is given
by the negative arrow above the steady state, the positive e↵ect of R on dN/dt = g(R,N) is
given by the positive arrow on the right side of the steady state, and the null e↵ect of N on
dN/dt = g(R,N) is revealed by the fact that g(R,N) = 0 above the steady state. A population
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that is maintained by a resource that is maintained by a source, and with a linear functional
response (leading to mass-action consumption and birth terms), is therefore expected to have a
stable steady state (the carrying capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities. This has been modeled with a simple Hill
function, f(R) = R

h+R
, which in this literature has been coined as the Monod saturation function.

Assuming that the rate at which bacteria divide is proportional to the rate at which they take
up nutrients, one would write

dR

dt
= s� wR� aRN

h+R
and

dN

dt
=

caRN

h+R
� (w + d)N =

caRN

h+R
� �N . (5.6)

At the expense of one new parameter, h, representing the resource density at which the per
capita consumption rate is half maximal, we now have a model that is also realistic at high
resource densities. The fitness R0 of the bacteria can now be defined in two ways. First,
one could invoke the maximum resource density, R = s/w, to compute a maximum division

rate cas/w

h+cas/w
= cas

wh+cas
. With an expected residence time of 1/� this would correspond to an

R0 = cas

�(wh+cas) . Second, one could go for a much simpler definition of R0 by making use of
the fact that the division rate approaches a maximum, ca, at infinite resource densities, which
provides an R0 =

ca

�
. The latter R0 is elegantly simple and will be used to clean up the expression

of the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca

�
. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.
5.2). To find the steady state of the bacteria we substitute R in the dR/dt = 0 equation with
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approaches a maximum at high nutrient densities. This has been modeled with a simple Hill
function, f(R) = R
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At the expense of one new parameter, h, representing the resource density at which the per
capita consumption rate is half maximal, we now have a model that is also realistic at high
resource densities. The fitness R0 of the bacteria can now be defined in two ways. First,
one could invoke the maximum resource density, R = s/w, to compute a maximum division

rate cas/w

h+cas/w
= cas

wh+cas
. With an expected residence time of 1/� this would correspond to an

R0 = cas

�(wh+cas) . Second, one could go for a much simpler definition of R0 by making use of
the fact that the division rate approaches a maximum, ca, at infinite resource densities, which
provides an R0 =

ca

�
. The latter R0 is elegantly simple and will be used to clean up the expression

of the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca
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. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.
5.2). To find the steady state of the bacteria we substitute R in the dR/dt = 0 equation with
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that is maintained by a resource that is maintained by a source, and with a linear functional
response (leading to mass-action consumption and birth terms), is therefore expected to have a
stable steady state (the carrying capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities. This has been modeled with a simple Hill
function, f(R) = R

h+R
, which in this literature has been coined as the Monod saturation function.

Assuming that the rate at which bacteria divide is proportional to the rate at which they take
up nutrients, one would write

dR

dt
= s� wR� aRN

h+R
and

dN

dt
=

caRN

h+R
� (w + d)N =

caRN

h+R
� �N . (5.6)

At the expense of one new parameter, h, representing the resource density at which the per capita
consumption rate is half maximal, we now have a model that is also realistic at high resource
densities. The fitness R0 of the bacteria can now be defined in two ways. First, one could invoke
the maximum resource density, R = s/w, to compute a maximum division rate cas/w

h+s/w
= cas

wh+s
.

With an expected residence time of 1/� this would correspond to an R0 =
cas

�(wh+s) . Second, one
could go for a much simpler definition of R0 by making use of the fact that the division rate
approaches a maximum, ca, at infinite resource densities, which provides an R0 =

ca

�
. The latter

R0 is elegantly simple and will be used to clean up the expression of the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca

�
. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.
5.2). To find the steady state of the bacteria we substitute the R in the dR/dt = 0 equation

R̄ =
h�

ca� �
=

h

R0 � 1
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Figure 5.3: The Lotka Volterra model. In Panels (a) and (b) the slanted red lines depict the dR/dt = 0
nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect in a stable steady state (as
indicated by the solid symbol) located at (R,N) = (R̄, N̄). The predator nullcline is located at the critical
prey density R

⇤ = d
ca = K

R0
. The black line in Panel (b) is a trajectory corresponding to the introduction

of a few consumers into the carrying capacity of the resource. Panel (c) depicts this trajectory as a time
plot, and illustrates that the consumer growth curve looks like a sigmoid logistic growth process. This
figure was made with the model lotka.R.

R̄ = h�

ca��
, which delivers

s� wh�

ca� �
� �

c
N = 0 resulting in N̄ =

cs

�
+

chw

ca� �
=

c

�

⇣
s+

hw

R0 � 1

⌘
. (5.7)

The dR/dt = 0 nullcline can be found as follows

s� wR =
aRN

h+R
$ N =

(h+R)(s� wR)

aR
=

h+R

a

⇣
s

R
� w

⌘
, (5.8)

which is zero when R = �h or R = s/w. Because N ' hs

aR
when R ⌧ h and R ⌧ s/w,

this nullcline has a vertical asymptote when R ! 0. Because h + R ! R when R � h, and
s/R�w ! �w when R � s, the nullcline approaches a slant asymptote with slope �w

a
R when

R ! 1 (see Fig. 5.2). The latter asymptote can be checked by observing that when R � h,
the nullcline is solved from s�wR = aN , revealing the slant asymptote N = s�wR

a
. We observe

that adding Monod saturation to the model hardly changes the phase plane. Since the local
vector field around the non-trivial steady state delivers the same graphical Jacobian as the last
matrix in Eq. (5.5) we confirm that non-trivial steady state is stable.

5.2 Replicating resources

Next consider a population consuming a replicating resource (that itself would approach a steady
state in the absence of consumption). This could be zooplankers grazing algae, or killer cells
that divide after removing tumor cells. In Chapter 3 we have learned that logistic growth is a
general for a replicating resource with linear density dependent birth and/or death rates. Thus,
starting simple by adopting logistic growth for the resource, and with the same mass-action
consumption as above, one would write

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
= caRN � �N . (5.9)
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that is maintained by a resource that is maintained by a source, and with a linear functional
response (leading to mass-action consumption and birth terms), is therefore expected to have a
stable steady state (the carrying capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities. This has been modeled with a simple Hill
function, f(R) = R

h+R
, which in this literature has been coined as the Monod saturation function.

Assuming that the rate at which bacteria divide is proportional to the rate at which they take
up nutrients, one would write

dR

dt
= s� wR� aRN

h+R
and

dN

dt
=

caRN

h+R
� (w + d)N =

caRN

h+R
� �N . (5.6)

At the expense of one new parameter, h, representing the resource density at which the per capita
consumption rate is half maximal, we now have a model that is also realistic at high resource
densities. The fitness R0 of the bacteria can now be defined in two ways. First, one could invoke
the maximum resource density, R = s/w, to compute a maximum division rate cas/w

h+s/w
= cas

wh+s
.

With an expected residence time of 1/� this would correspond to an R0 =
cas

�(wh+s) . Second, one
could go for a much simpler definition of R0 by making use of the fact that the division rate
approaches a maximum, ca, at infinite resource densities, which provides an R0 =

ca

�
. The latter

R0 is elegantly simple and will be used to clean up the expression of the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca

�
. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.
5.2). To find the steady state of the bacteria we substitute the R in the dR/dt = 0 equation

dR

dt
= 0
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that is maintained by a resource that is maintained by a source, and with a linear functional
response (leading to mass-action consumption and birth terms), is therefore expected to have a
stable steady state (the carrying capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities. This has been modeled with a simple Hill
function, f(R) = R

h+R
, which in this literature has been coined as the Monod saturation function.

Assuming that the rate at which bacteria divide is proportional to the rate at which they take
up nutrients, one would write

dR

dt
= s� wR� aRN

h+R
and

dN

dt
=

caRN

h+R
� (w + d)N =

caRN

h+R
� �N . (5.6)

At the expense of one new parameter, h, representing the resource density at which the per
capita consumption rate is half maximal, we now have a model that is also realistic at high
resource densities. The fitness R0 of the bacteria can now be defined in two ways. First,
one could invoke the maximum resource density, R = s/w, to compute a maximum division

rate cas/w

h+cas/w
= cas

wh+cas
. With an expected residence time of 1/� this would correspond to an

R0 = cas

�(wh+cas) . Second, one could go for a much simpler definition of R0 by making use of
the fact that the division rate approaches a maximum, ca, at infinite resource densities, which
provides an R0 =

ca

�
. The latter R0 is elegantly simple and will be used to clean up the expression

of the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca

�
. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.
5.2). To find the steady state of the bacteria we substitute R in the dR/dt = 0 equation with

�w

a
R
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that is maintained by a resource that is maintained by a source, and with a linear functional
response (leading to mass-action consumption and birth terms), is therefore expected to have a
stable steady state (the carrying capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities. This has been modeled with a simple Hill
function, f(R) = R

h+R
, which in this literature has been coined as the Monod saturation function.

Assuming that the rate at which bacteria divide is proportional to the rate at which they take
up nutrients, one would write
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and
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=

caRN

h+R
� (w + d)N =
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At the expense of one new parameter, h, representing the resource density at which the per
capita consumption rate is half maximal, we now have a model that is also realistic at high
resource densities. The fitness R0 of the bacteria can now be defined in two ways. First,
one could invoke the maximum resource density, R = s/w, to compute a maximum division

rate cas/w

h+cas/w
= cas

wh+cas
. With an expected residence time of 1/� this would correspond to an

R0 = cas

�(wh+cas) . Second, one could go for a much simpler definition of R0 by making use of
the fact that the division rate approaches a maximum, ca, at infinite resource densities, which
provides an R0 =

ca

�
. The latter R0 is elegantly simple and will be used to clean up the expression

of the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca
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. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.
5.2). To find the steady state of the bacteria we substitute R in the dR/dt = 0 equation with
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that is maintained by a resource that is maintained by a source, and with a linear functional
response (leading to mass-action consumption and birth terms), is therefore expected to have a
stable steady state (the carrying capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities. This has been modeled with a simple Hill
function, f(R) = R

h+R
, which in this literature has been coined as the Monod saturation function.

Assuming that the rate at which bacteria divide is proportional to the rate at which they take
up nutrients, one would write

dR

dt
= s� wR� aRN

h+R
and

dN

dt
=

caRN
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� (w + d)N =
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h+R
� �N . (5.6)

At the expense of one new parameter, h, representing the resource density at which the per capita
consumption rate is half maximal, we now have a model that is also realistic at high resource
densities. The fitness R0 of the bacteria can now be defined in two ways. First, one could invoke
the maximum resource density, R = s/w, to compute a maximum division rate cas/w

h+s/w
= cas

wh+s
.

With an expected residence time of 1/� this would correspond to an R0 =
cas

�(wh+s) . Second, one
could go for a much simpler definition of R0 by making use of the fact that the division rate
approaches a maximum, ca, at infinite resource densities, which provides an R0 =

ca

�
. The latter

R0 is elegantly simple and will be used to clean up the expression of the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca
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. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.
5.2). To find the steady state of the bacteria we substitute the R in the dR/dt = 0 equation

J =

✓
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prey density R

⇤ = d
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R0
. The black line in Panel (b) is a trajectory corresponding to the introduction

of a few consumers into the carrying capacity of the resource. Panel (c) depicts this trajectory as a time
plot, and illustrates that the consumer growth curve looks like a sigmoid logistic growth process. This
figure was made with the model lotka.R.
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The dR/dt = 0 nullcline can be found as follows

s� wR =
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h+R
$ N =
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which is zero when R = �h or R = s/w. Because N ' hs

aR
when R ⌧ h and R ⌧ s/w,

this nullcline has a vertical asymptote when R ! 0. Because h + R ! R when R � h, and
s/R�w ! �w when R � s, the nullcline approaches a slant asymptote with slope �w

a
R when

R ! 1 (see Fig. 5.2). The latter asymptote can be checked by observing that when R � h,
the nullcline is solved from s�wR = aN , revealing the slant asymptote N = s�wR

a
. We observe

that adding Monod saturation to the model hardly changes the phase plane. Since the local
vector field around the non-trivial steady state delivers the same graphical Jacobian as the last
matrix in Eq. (5.5) we confirm that non-trivial steady state is stable.

5.2 Replicating resources

Next consider a population consuming a replicating resource (that itself would approach a steady
state in the absence of consumption). This could be zooplankers grazing algae, or killer cells
that divide after removing tumor cells. In Chapter 3 we have learned that logistic growth is a
general for a replicating resource with linear density dependent birth and/or death rates. Thus,
starting simple by adopting logistic growth for the resource, and with the same mass-action
consumption as above, one would write

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
= caRN � �N . (5.9)

38 Killing and consumption

This is the famous Lotka-Volterra model that was proposed independently by Lotka (1913) and
Volterra (1926) as an ecological predator-prey model. Note that the ODE for the consumers is
identical to Eq. (5.3). We will see later that epidemiological models for an infection spreading in
a population of susceptible hosts can also be described with Eq. (5.9) (when R are susceptible
and N infected hosts, a is an infection rate, and c = 1). Interpreting R has the size of a tumor
(or an infection), caR as a per capita cell division rate, and N as the number of immune e↵ector
cells, the same model has also been used for modeling an immune response to a replicating
threat.

Because the Lotka-Volterra model is used so widely in Theoretical Biology we will analyze it in
detail. Starting with the steady states we observe that in the absence of consumers the resource
will either be zero, or approach the steady state R̄ = K. In the presence of consumers one solves
R̄ = �

ca
by setting dN/dt = 0, and substituting this into

r(1�R/K)� aN = 0 delivering N̄ =
r

a

⇣
1� �

caK

⌘
(5.10)

for the non-trivial steady state of the consumers. The dN/dt = 0 nullcline consists of the now
familiar straight lines N = 0 and R = �

ca
, and the dR/dt = 0 isocline is defined by R = 0 and

N = r

a
(1� R

K
). Depicted in a phase space with N on the vertical axis and R on the horizontal

axis, the nullcline of the resource is a declining straight line, intersecting the vertical axis at
N = r/a and the horizontal axis at R = K (see Fig. 5.3a). The location of the non-trivial
consumer nullcline again defines the critical resource density, R⇤, required for net growth of the
consumers, and the non-trivial steady state only exists when R

⇤
< K (see Fig. 5.3a).

The model has maximally three steady states,

(R̄, N̄) = (0, 0), (K, 0) and
⇣
�

ca
,
r

a

h
1� �

caK

i⌘
. (5.11)

The vector field in Fig. 5.3a reveals that the first two are unstable (saddle-points). Defining
f(R,N) = dR/dt and g(R,N) = dN/dt, computing the four partial derivatives, the Jacobian
of the non-trivial steady state is defined as
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(5.12)
where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = �� = �� > 0, both eigenvalues will be negative (i.e., have a negative
real part), and that the non-trivial steady state is stable. Note that the trajectory in Fig. 5.3b
is spiraling inwards, meaning that for the parameters that were used to make this figure the
steady state is a stable-spiral point (and that the eigenvalues are a complex pair with a negative
real part).

The R0 of the resource is not defined because the logistic growth term collapsed birth and death
into a net growth rate. Since dN/dt has separate birth and death terms, one can calculate an
R0 for the predator. Because the per capita birth rate of the consumers, caR, is proportional to
the prey density, we have to substitute the maximum prey density R = K into the birth rate,
caR (because the R0 is calculated for the best possible circumstances; see Chapter 6). Doing so
one arrives at R0 =

caK

�
, and for this fitness R0 = 1 can indeed be used as an invasion criterion

because the predator can only grow when caK > �. The expression of the fitness, R0 = caK

�
,

and the location of the consumer nullcline, R⇤ = �

ca
, resemble each other. This can be used to

express R⇤ in terms of the R0, i.e., R⇤ = K/R0, which says that the degree by which a predator
exhausts its prey population is completely determined by its R0. A predator with an R0 = 10
is therefore expected to deplete the prey density to 10% of its carrying capacity.
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This is the famous Lotka-Volterra model that was proposed independently by Lotka (1913) and
Volterra (1926) as an ecological predator-prey model. Note that the ODE for the consumers is
identical to Eq. (5.3). We will see later that epidemiological models for an infection spreading in
a population of susceptible hosts can also be described with Eq. (5.9) (when R are susceptible
and N infected hosts, a is an infection rate, and c = 1). Interpreting R has the size of a tumor
(or an infection), caR as a per capita cell division rate, and N as the number of immune e↵ector
cells, the same model has also been used for modeling an immune response to a replicating
threat.

Because the Lotka-Volterra model is used so widely in Theoretical Biology we will analyze it in
detail. Starting with the steady states we observe that in the absence of consumers the resource
will either be zero, or approach the steady state R̄ = K. In the presence of consumers one solves
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by setting dN/dt = 0, and substituting this into
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for the non-trivial steady state of the consumers. The dN/dt = 0 nullcline consists of the now
familiar straight lines N = 0 and R = �
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, and the dR/dt = 0 isocline is defined by R = 0 and
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axis, the nullcline of the resource is a declining straight line, intersecting the vertical axis at
N = r/a and the horizontal axis at R = K (see Fig. 5.3a). The location of the non-trivial
consumer nullcline again defines the critical resource density, R⇤, required for net growth of the
consumers, and the non-trivial steady state only exists when R
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< K (see Fig. 5.3a).
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The vector field in Fig. 5.3a reveals that the first two are unstable (saddle-points). Defining
f(R,N) = dR/dt and g(R,N) = dN/dt, computing the four partial derivatives, the Jacobian
of the non-trivial steady state is defined as
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where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = �� = �� > 0, both eigenvalues will be negative (i.e., have a negative
real part), and that the non-trivial steady state is stable. Note that the trajectory in Fig. 5.3b
is spiraling inwards, meaning that for the parameters that were used to make this figure the
steady state is a stable-spiral point (and that the eigenvalues are a complex pair with a negative
real part).

The R0 of the resource is not defined because the logistic growth term collapsed birth and death
into a net growth rate. Since dN/dt has separate birth and death terms, one can calculate an
R0 for the predator. Because the per capita birth rate of the consumers, caR, is proportional to
the prey density, we have to substitute the maximum prey density R = K into the birth rate,
caR (because the R0 is calculated for the best possible circumstances; see Chapter 6). Doing so
one arrives at R0 =

caK

�
, and for this fitness R0 = 1 can indeed be used as an invasion criterion

because the predator can only grow when caK > �. The expression of the fitness, R0 = caK

�
,

and the location of the consumer nullcline, R⇤ = �

ca
, resemble each other. This can be used to

express R⇤ in terms of the R0, i.e., R⇤ = K/R0, which says that the degree by which a predator
exhausts its prey population is completely determined by its R0. A predator with an R0 = 10
is therefore expected to deplete the prey density to 10% of its carrying capacity.
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R̄ =
�

ca
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Figure 5.3: The Lotka Volterra model. In Panels (a) and (b) the slanted red lines depict the dR/dt = 0
nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect in a stable steady state (as
indicated by the solid symbol) located at (R,N) = (R̄, N̄). The predator nullcline is located at the critical
prey density R

⇤ = d
ca = K

R0
. The black line in Panel (b) is a trajectory corresponding to the introduction

of a few consumers into the carrying capacity of the resource. Panel (c) depicts this trajectory as a time
plot, and illustrates that the consumer growth curve looks like a sigmoid logistic growth process. This
figure was made with the model lotka.R.
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The dR/dt = 0 nullcline can be found as follows
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h+R
$ N =
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which is zero when R = �h or R = s/w. Because N ' hs

aR
when R ⌧ h and R ⌧ s/w,

this nullcline has a vertical asymptote when R ! 0. Because h + R ! R when R � h, and
s/R�w ! �w when R � s, the nullcline approaches a slant asymptote with slope �w

a
R when

R ! 1 (see Fig. 5.2). The latter asymptote can be checked by observing that when R � h,
the nullcline is solved from s�wR = aN , revealing the slant asymptote N = s�wR

a
. We observe

that adding Monod saturation to the model hardly changes the phase plane. Since the local
vector field around the non-trivial steady state delivers the same graphical Jacobian as the last
matrix in Eq. (5.5) we confirm that non-trivial steady state is stable.

5.2 Replicating resources

Next consider a population consuming a replicating resource (that itself would approach a steady
state in the absence of consumption). This could be zooplankers grazing algae, or killer cells
that divide after removing tumor cells. In Chapter 3 we have learned that logistic growth is a
general for a replicating resource with linear density dependent birth and/or death rates. Thus,
starting simple by adopting logistic growth for the resource, and with the same mass-action
consumption as above, one would write

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
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of a few consumers into the carrying capacity of the resource. Panel (c) depicts this trajectory as a time
plot, and illustrates that the consumer growth curve looks like a sigmoid logistic growth process. This
figure was made with the model lotka.R.
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which is zero when R = �h or R = s/w. Because N ' hs
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this nullcline has a vertical asymptote when R ! 0. Because h + R ! R when R � h, and
s/R�w ! �w when R � s, the nullcline approaches a slant asymptote with slope �w

a
R when

R ! 1 (see Fig. 5.2). The latter asymptote can be checked by observing that when R � h,
the nullcline is solved from s�wR = aN , revealing the slant asymptote N = s�wR

a
. We observe

that adding Monod saturation to the model hardly changes the phase plane. Since the local
vector field around the non-trivial steady state delivers the same graphical Jacobian as the last
matrix in Eq. (5.5) we confirm that non-trivial steady state is stable.

5.2 Replicating resources

Next consider a population consuming a replicating resource (that itself would approach a steady
state in the absence of consumption). This could be zooplankers grazing algae, or killer cells
that divide after removing tumor cells. In Chapter 3 we have learned that logistic growth is a
general for a replicating resource with linear density dependent birth and/or death rates. Thus,
starting simple by adopting logistic growth for the resource, and with the same mass-action
consumption as above, one would write

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
= caRN � �N . (5.9)

38 Killing and consumption

This is the famous Lotka-Volterra model that was proposed independently by Lotka (1913) and
Volterra (1926) as an ecological predator-prey model. Note that the ODE for the consumers is
identical to Eq. (5.3). We will see later that epidemiological models for an infection spreading in
a population of susceptible hosts can also be described with Eq. (5.9) (when R are susceptible
and N infected hosts, a is an infection rate, and c = 1). Interpreting R has the size of a tumor
(or an infection), caR as a per capita cell division rate, and N as the number of immune e↵ector
cells, the same model has also been used for modeling an immune response to a replicating
threat.

Because the Lotka-Volterra model is used so widely in Theoretical Biology we will analyze it in
detail. Starting with the steady states we observe that in the absence of consumers the resource
will either be zero, or approach the steady state R̄ = K. In the presence of consumers one solves
R̄ = �

ca
by setting dN/dt = 0, and substituting this into

r(1�R/K)� aN = 0 delivering N̄ =
r

a

⇣
1� �

caK

⌘
(5.10)

for the non-trivial steady state of the consumers. The dN/dt = 0 nullcline consists of the now
familiar straight lines N = 0 and R = �

ca
, and the dR/dt = 0 isocline is defined by R = 0 and

N = r

a
(1� R

K
). Depicted in a phase space with N on the vertical axis and R on the horizontal

axis, the nullcline of the resource is a declining straight line, intersecting the vertical axis at
N = r/a and the horizontal axis at R = K (see Fig. 5.3a). The location of the non-trivial
consumer nullcline again defines the critical resource density, R⇤, required for net growth of the
consumers, and the non-trivial steady state only exists when R

⇤
< K (see Fig. 5.3a).

The model has maximally three steady states,

(R̄, N̄) = (0, 0), (K, 0) and
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The vector field in Fig. 5.3a reveals that the first two are unstable (saddle-points). Defining
f(R,N) = dR/dt and g(R,N) = dN/dt, computing the four partial derivatives, the Jacobian
of the non-trivial steady state is defined as
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where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = �� = �� > 0, both eigenvalues will be negative (i.e., have a negative
real part), and that the non-trivial steady state is stable. Note that the trajectory in Fig. 5.3b
is spiraling inwards, meaning that for the parameters that were used to make this figure the
steady state is a stable-spiral point (and that the eigenvalues are a complex pair with a negative
real part).

The R0 of the resource is not defined because the logistic growth term collapsed birth and death
into a net growth rate. Since dN/dt has separate birth and death terms, one can calculate an
R0 for the predator. Because the per capita birth rate of the consumers, caR, is proportional to
the prey density, we have to substitute the maximum prey density R = K into the birth rate,
caR (because the R0 is calculated for the best possible circumstances; see Chapter 6). Doing so
one arrives at R0 =

caK

�
, and for this fitness R0 = 1 can indeed be used as an invasion criterion

because the predator can only grow when caK > �. The expression of the fitness, R0 = caK

�
,

and the location of the consumer nullcline, R⇤ = �

ca
, resemble each other. This can be used to

express R⇤ in terms of the R0, i.e., R⇤ = K/R0, which says that the degree by which a predator
exhausts its prey population is completely determined by its R0. A predator with an R0 = 10
is therefore expected to deplete the prey density to 10% of its carrying capacity.
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this nullcline has a vertical asymptote when R ! 0. Because h + R ! R when R � h, and
s/R�w ! �w when R � s, the nullcline approaches a slant asymptote with slope �w
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R ! 1 (see Fig. 5.2). The latter asymptote can be checked by observing that when R � h,
the nullcline is solved from s�wR = aN , revealing the slant asymptote N = s�wR
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. We observe

that adding Monod saturation to the model hardly changes the phase plane. Since the local
vector field around the non-trivial steady state delivers the same graphical Jacobian as the last
matrix in Eq. (5.5) we confirm that non-trivial steady state is stable.

5.2 Replicating resources

Next consider a population consuming a replicating resource (that itself would approach a steady
state in the absence of consumption). This could be zooplankers grazing algae, or killer cells
that divide after removing tumor cells. In Chapter 3 we have learned that logistic growth is a
general for a replicating resource with linear density dependent birth and/or death rates. Thus,
starting simple by adopting logistic growth for the resource, and with the same mass-action
consumption as above, one would write

dR

dt
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Volterra (1926) as an ecological predator-prey model. Note that the ODE for the consumers is
identical to Eq. (5.3). We will see later that epidemiological models for an infection spreading in
a population of susceptible hosts can also be described with Eq. (5.9) (when R are susceptible
and N infected hosts, a is an infection rate, and c = 1). Interpreting R has the size of a tumor
(or an infection), caR as a per capita cell division rate, and N as the number of immune e↵ector
cells, the same model has also been used for modeling an immune response to a replicating
threat.

Because the Lotka-Volterra model is used so widely in Theoretical Biology we will analyze it in
detail. Starting with the steady states we observe that in the absence of consumers the resource
will either be zero, or approach the steady state R̄ = K. In the presence of consumers one solves
R̄ = �

ca
by setting dN/dt = 0, and substituting this into
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for the non-trivial steady state of the consumers. The dN/dt = 0 nullcline consists of the now
familiar straight lines N = 0 and R = �

ca
, and the dR/dt = 0 isocline is defined by R = 0 and
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). Depicted in a phase space with N on the vertical axis and R on the horizontal

axis, the nullcline of the resource is a declining straight line, intersecting the vertical axis at
N = r/a and the horizontal axis at R = K (see Fig. 5.3a). The location of the non-trivial
consumer nullcline again defines the critical resource density, R⇤, required for net growth of the
consumers, and the non-trivial steady state only exists when R

⇤
< K (see Fig. 5.3a).

The model has maximally three steady states,

(R̄, N̄) = (0, 0), (K, 0) and
⇣
�

ca
,
r

a

h
1� �

caK

i⌘
. (5.11)

The vector field in Fig. 5.3a reveals that the first two are unstable (saddle-points). Defining
f(R,N) = dR/dt and g(R,N) = dN/dt, computing the four partial derivatives, the Jacobian
of the non-trivial steady state is defined as

J =

✓
@Rf @Nf

@Rg @Ng

◆

|(R̄,N̄)

=

✓
r � 2r

K
R̄� aN̄ �aR̄

caN̄ caR̄� �

◆
=

✓
� r�

caK
��/c

caN̄ 0

◆
=

✓
�↵ ��

+� 0

◆
,

(5.12)
where ↵,� and � are arbitrary positive values. Since the trace of this Jacobi matrix, tr = �↵ < 0,
and its determinant, det = �� = �� > 0, both eigenvalues will be negative (i.e., have a negative
real part), and that the non-trivial steady state is stable. Note that the trajectory in Fig. 5.3b
is spiraling inwards, meaning that for the parameters that were used to make this figure the
steady state is a stable-spiral point (and that the eigenvalues are a complex pair with a negative
real part).

The R0 of the resource is not defined because the logistic growth term collapsed birth and death
into a net growth rate. Since dN/dt has separate birth and death terms, one can calculate an
R0 for the predator. Because the per capita birth rate of the consumers, caR, is proportional to
the prey density, we have to substitute the maximum prey density R = K into the birth rate,
caR (because the R0 is calculated for the best possible circumstances; see Chapter 6). Doing so
one arrives at R0 =

caK

�
, and for this fitness R0 = 1 can indeed be used as an invasion criterion

because the predator can only grow when caK > �. The expression of the fitness, R0 = caK

�
,

and the location of the consumer nullcline, R⇤ = �

ca
, resemble each other. This can be used to

express R⇤ in terms of the R0, i.e., R⇤ = K/R0, which says that the degree by which a predator
exhausts its prey population is completely determined by its R0. A predator with an R0 = 10
is therefore expected to deplete the prey density to 10% of its carrying capacity.
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Figure 5.3: The Lotka Volterra model. In Panels (a) and (b) the slanted red lines depict the dR/dt = 0
nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect in a stable steady state (as
indicated by the solid symbol) located at (R,N) = (R̄, N̄). The predator nullcline is located at the critical
prey density R

⇤ = d
ca = K

R0
. The black line in Panel (b) is a trajectory corresponding to the introduction

of a few consumers into the carrying capacity of the resource. Panel (c) depicts this trajectory as a time
plot, and illustrates that the consumer growth curve looks like a sigmoid logistic growth process. This
figure was made with the model lotka.R.

R̄ = h�

ca��
, which delivers

s� wh�

ca� �
� �

c
N = 0 resulting in N̄ =

cs

�
+

chw

ca� �
=

c

�

⇣
s+

hw

R0 � 1

⌘
. (5.7)

The dR/dt = 0 nullcline can be found as follows

s� wR =
aRN

h+R
$ N =

(h+R)(s� wR)

aR
=

h+R

a

⇣
s

R
� w

⌘
, (5.8)

which is zero when R = �h or R = s/w. Because N ' hs

aR
when R ⌧ h and R ⌧ s/w,

this nullcline has a vertical asymptote when R ! 0. Because h + R ! R when R � h, and
s/R�w ! �w when R � s, the nullcline approaches a slant asymptote with slope �w

a
R when

R ! 1 (see Fig. 5.2). The latter asymptote can be checked by observing that when R � h,
the nullcline is solved from s�wR = aN , revealing the slant asymptote N = s�wR

a
. We observe

that adding Monod saturation to the model hardly changes the phase plane. Since the local
vector field around the non-trivial steady state delivers the same graphical Jacobian as the last
matrix in Eq. (5.5) we confirm that non-trivial steady state is stable.

5.2 Replicating resources

Next consider a population consuming a replicating resource (that itself would approach a steady
state in the absence of consumption). This could be zooplankers grazing algae, or killer cells
that divide after removing tumor cells. In Chapter 3 we have learned that logistic growth is a
general for a replicating resource with linear density dependent birth and/or death rates. Thus,
starting simple by adopting logistic growth for the resource, and with the same mass-action
consumption as above, one would write

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
= caRN � �N . (5.9)
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Generalizing the Lotka-Volterra model

The Lotka-Volterra model assumed that the density-dependent terms of the resource are lin-
ear. What to expect for the consumption of replicating resources having a non-linear density-
dependence? A simple approach to test this is to use the generalized form of the Logistic-growth
equation (see Chapter 3), and write a “generalized” Lotka-Volterra model

dR

dt
= rR(1� (R/K)m)� aRN ,

dN

dt
= caRN � �N , (5.13)

which has identical dN/dt = 0 nullclines. The non-trivial dR/dt = 0 nullcline, N = r

a
(1 �

(R/K)m), is concave when m > 1 and convex when m < 1 (see Fig. 5.4). Because, this does
not a↵ect the nature of the steady states in the phase plane, i.e., the local vector field in the
neighborhood of the steady states remains the same, we conclude that similar model behavior
is expected when resources have a non-linear density-dependence.

Generally the shape of the dR/dt = 0 nullcline for a resource having a mass-action consumption
term reflects the per capita growth rate of the resource. Consider the more general form

dR

dt
= [f(R)� aN ]R , (5.14)

where f(R) is an arbitrary function defining the per capita growth rate of R, and observe that
the non-trivial nullcline can be written as N = f(R)/c. Thus, whenever the per capita growth
rate of R is a monotonically declining function of R, we expect a declining “Lotka-Volterra like”
nullcline of the resource in the phase space, provided we can cancel R from the consumption
term (here the mass-action, aNR, term). We therefore expect more complicated nullclines for
saturated consumption terms, e.g., aNR

h+R
, from which we cannot cancel R. This is explored in

Chapter 7.

When to expect the vertical dN/dt = 0 nullcline that we obtained throughout this chapter?
The Lotka-Volterra model assumes that the birth rate of the consumers increases linearly with
the per capita consumption, aR. This need not be true as a consumer’s birth rate may be a
saturation function of its consumption; at a certain level of consumption the birth rate may slow
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The Lotka-Volterra model assumed that the density-dependent terms of the resource are lin-
ear. What to expect for the consumption of replicating resources having a non-linear density-
dependence? A simple approach to test this is to use the generalized form of the Logistic-growth
equation (see Chapter 3), and write a “generalized” Lotka-Volterra model

dR

dt
= rR(1� (R/K)m)� aRN ,

dN

dt
= caRN � �N , (5.13)

which has identical dN/dt = 0 nullclines. The non-trivial dR/dt = 0 nullcline, N = r

a
(1 �

(R/K)m), is concave when m > 1 and convex when m < 1 (see Fig. 5.4). Because, this does
not a↵ect the nature of the steady states in the phase plane, i.e., the local vector field in the
neighborhood of the steady states remains the same, we conclude that similar model behavior
is expected when resources have a non-linear density-dependence.

Generally the shape of the dR/dt = 0 nullcline for a resource having a mass-action consumption
term reflects the per capita growth rate of the resource. Consider the more general form

dR

dt
= [f(R)� aN ]R , (5.14)

where f(R) is an arbitrary function defining the per capita growth rate of R, and observe that
the non-trivial nullcline can be written as N = f(R)/c. Thus, whenever the per capita growth
rate of R is a monotonically declining function of R, we expect a declining “Lotka-Volterra like”
nullcline of the resource in the phase space, provided we can cancel R from the consumption
term (here the mass-action, aNR, term). We therefore expect more complicated nullclines for
saturated consumption terms, e.g., aNR

h+R
, from which we cannot cancel R. This is explored in

Chapter 7.

When to expect the vertical dN/dt = 0 nullcline that we obtained throughout this chapter?
The Lotka-Volterra model assumes that the birth rate of the consumers increases linearly with
the per capita consumption, aR. This need not be true as a consumer’s birth rate may be a
saturation function of its consumption; at a certain level of consumption the birth rate may slow
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Generalizing the Lotka-Volterra model

The Lotka-Volterra model assumed that the density-dependent terms of the resource are lin-
ear. What to expect for the consumption of replicating resources having a non-linear density-
dependence? A simple approach to test this is to use the generalized form of the Logistic-growth
equation (see Chapter 3), and write a “generalized” Lotka-Volterra model

dR

dt
= rR(1� (R/K)m)� aRN ,

dN

dt
= caRN � �N , (5.13)

which has identical dN/dt = 0 nullclines. The non-trivial dR/dt = 0 nullcline, N = r

a
(1 �

(R/K)m), is concave when m > 1 and convex when m < 1 (see Fig. 5.4). Because, this does
not a↵ect the nature of the steady states in the phase plane, i.e., the local vector field in the
neighborhood of the steady states remains the same, we conclude that similar model behavior
is expected when resources have a non-linear density-dependence.

Generally the shape of the dR/dt = 0 nullcline for a resource having a mass-action consumption
term reflects the per capita growth rate of the resource. Consider the more general form

dR

dt
= [f(R)� aN ]R , (5.14)

where f(R) is an arbitrary function defining the per capita growth rate of R, and observe that
the non-trivial nullcline can be written as N = f(R)/c. Thus, whenever the per capita growth
rate of R is a monotonically declining function of R, we expect a declining “Lotka-Volterra like”
nullcline of the resource in the phase space, provided we can cancel R from the consumption
term (here the mass-action, aNR, term). We therefore expect more complicated nullclines for
saturated consumption terms, e.g., aNR

h+R
, from which we cannot cancel R. This is explored in

Chapter 7.

When to expect the vertical dN/dt = 0 nullcline that we obtained throughout this chapter?
The Lotka-Volterra model assumes that the birth rate of the consumers increases linearly with
the per capita consumption, aR. This need not be true as a consumer’s birth rate may be a
saturation function of its consumption; at a certain level of consumption the birth rate may slow
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Generalizing the Lotka-Volterra model

The Lotka-Volterra model assumed that the density-dependent terms of the resource are lin-
ear. What to expect for the consumption of replicating resources having a non-linear density-
dependence? A simple approach to test this is to use the generalized form of the Logistic-growth
equation (see Chapter 3), and write a “generalized” Lotka-Volterra model

dR

dt
= rR(1� (R/K)m)� aRN ,

dN

dt
= caRN � �N , (5.13)

which has identical dN/dt = 0 nullclines. The non-trivial dR/dt = 0 nullcline, N = r

a
(1 �

(R/K)m), is concave when m > 1 and convex when m < 1 (see Fig. 5.4). Because, this does
not a↵ect the nature of the steady states in the phase plane, i.e., the local vector field in the
neighborhood of the steady states remains the same, we conclude that similar model behavior
is expected when resources have a non-linear density-dependence.

Generally the shape of the dR/dt = 0 nullcline for a resource having a mass-action consumption
term reflects the per capita growth rate of the resource. Consider the more general form

dR

dt
= [f(R)� aN ]R , (5.14)

where f(R) is an arbitrary function defining the per capita growth rate of R, and observe that
the non-trivial nullcline can be written as N = f(R)/c. Thus, whenever the per capita growth
rate of R is a monotonically declining function of R, we expect a declining “Lotka-Volterra like”
nullcline of the resource in the phase space, provided we can cancel R from the consumption
term (here the mass-action, aNR, term). We therefore expect more complicated nullclines for
saturated consumption terms, e.g., aNR

h+R
, from which we cannot cancel R. This is explored in

Chapter 7.

When to expect the vertical dN/dt = 0 nullcline that we obtained throughout this chapter?
The Lotka-Volterra model assumes that the birth rate of the consumers increases linearly with
the per capita consumption, aR. This need not be true as a consumer’s birth rate may be a
saturation function of its consumption; at a certain level of consumption the birth rate may slow
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Generalizing the Lotka-Volterra model

The Lotka-Volterra model assumed that the density-dependent terms of the resource are lin-
ear. What to expect for the consumption of replicating resources having a non-linear density-
dependence? A simple approach to test this is to use the generalized form of the Logistic-growth
equation (see Chapter 3), and write a “generalized” Lotka-Volterra model

dR

dt
= rR(1� (R/K)m)� aRN ,

dN

dt
= caRN � �N , (5.13)

which has identical dN/dt = 0 nullclines. The non-trivial dR/dt = 0 nullcline, N = r

a
(1 �

(R/K)m), is concave when m > 1 and convex when m < 1 (see Fig. 5.4). Because, this does
not a↵ect the nature of the steady states in the phase plane, i.e., the local vector field in the
neighborhood of the steady states remains the same, we conclude that similar model behavior
is expected when resources have a non-linear density-dependence.

Generally the shape of the dR/dt = 0 nullcline for a resource having a mass-action consumption
term reflects the per capita growth rate of the resource. Consider the more general form

dR

dt
= [f(R)� aN ]R , (5.14)

where f(R) is an arbitrary function defining the per capita growth rate of R, and observe that
the non-trivial nullcline can be written as N = f(R)/c. Thus, whenever the per capita growth
rate of R is a monotonically declining function of R, we expect a declining “Lotka-Volterra like”
nullcline of the resource in the phase space, provided we can cancel R from the consumption
term (here the mass-action, aNR, term). We therefore expect more complicated nullclines for
saturated consumption terms, e.g., aNR

h+R
, from which we cannot cancel R. This is explored in

Chapter 7.

When to expect the vertical dN/dt = 0 nullcline that we obtained throughout this chapter?
The Lotka-Volterra model assumes that the birth rate of the consumers increases linearly with
the per capita consumption, aR. This need not be true as a consumer’s birth rate may be a
saturation function of its consumption; at a certain level of consumption the birth rate may slow

40 Killing and consumption

down due to “diminishing returns”. Such a relationship, e.g., a per capita birth rate of

g(aR) = �
aR

H + aR
= �

R

h+R
, (5.15)

where � is the maximum birth rate and h = H/a, would correspond to

dN

dt
=


�R

h+R
� �

�
N , (5.16)

with an R0 = �/�. Since, one can cancel the N = 0 solution after setting dN/dt = 0, we would
still obtain a vertical nullcline (at R = h

R0�1). Rewriting Eq. (5.16) in a more general form like

dN

dt
= [�f(R)� �]N , (5.17)

one indeed obtains a vertical predator nullcline for any function f(R). Summarizing, a vertical
predator nullcline is obtained whenever one can cancel the consumer, N , from the consumer’s
dN/dt = 0 equation.

The nullcline will no longer be vertical when the consumer, N , remains present in the term
between the square brackets of Eq. (5.17). This will be the case when the functional response is
predator dependent, i.e., when one replaces f(R) by f(R,N), or when the death rate is density
dependent, e.g., when � is replaced by �(1 + ✏N

m). Whenever this leads to a negative density-
dependence, the predator nullcline will typically be slanted to the right, which changes the e↵ect
of the consumer on itself from zero to negative (see Fig. 5.5e). The graphical Jacobian of the
non-trivial steady state of a Lotka-Volterra model with a negative density-dependence of the
consumer will therefore be

J =

✓
� �
+ �

◆
with tr < 0 and det > 0 . (5.18)

The steady state remains stable, and most of the conclusions drawn in this chapter seem robust
to allowing for direct competition among the consumers. In the next section we will see that
allowing for positive density-dependence among the consumers, e.g., by cooperative killing, is
also expected to lead to a stable steady state whenever the resource has su�cient negative
density-dependence (see Fig. 5.5f).

Horizontal and vertical nullclines

The Lotka-Volterra model is sometimes written in a structurally unstable form without a car-
rying capacity of the resource:

dR

dt
= rR� aRN ,

dN

dt
= caRN � �N , (5.19)

which has the normal vertical dN/dt = 0 nullcline at R = d

ca
and a horizontal dR/dt = 0 nullcline

at N = r

a
(see Fig. 5.5b). This model is mathematically elegant but has limited biological

relevance. The reason is that any small change of the model will lead to a qualitatively di↵erent
type of behavior. The model is therefore said to be “structurally unstable”, and should not used
it in biological research. Mathematicians use the model in teaching examples because the model
is so elegantly simple. The non-trivial steady state is given by the perpendicular intersection of
the nullclines, i.e. (R̄, N̄) = ( �

ca
,
r

a
), and the Jacobian of this steady state is

J =

✓
r � aN̄ �aR̄

caN̄ caR̄� �

◆
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cr 0

◆
. (5.20)
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Generalizing the Lotka-Volterra model

The Lotka-Volterra model assumed that the density-dependent terms of the resource are lin-
ear. What to expect for the consumption of replicating resources having a non-linear density-
dependence? A simple approach to test this is to use the generalized form of the Logistic-growth
equation (see Chapter 3), and write a “generalized” Lotka-Volterra model

dR

dt
= rR(1� (R/K)m)� aRN ,

dN

dt
= caRN � �N , (5.13)

which has identical dN/dt = 0 nullclines. The non-trivial dR/dt = 0 nullcline, N = r

a
(1 �

(R/K)m), is concave when m > 1 and convex when m < 1 (see Fig. 5.4). Because, this does
not a↵ect the nature of the steady states in the phase plane, i.e., the local vector field in the
neighborhood of the steady states remains the same, we conclude that similar model behavior
is expected when resources have a non-linear density-dependence.

Generally the shape of the dR/dt = 0 nullcline for a resource having a mass-action consumption
term reflects the per capita growth rate of the resource. Consider the more general form

dR

dt
= [f(R)� aN ]R , (5.14)

where f(R) is an arbitrary function defining the per capita growth rate of R, and observe that
the non-trivial nullcline can be written as N = f(R)/c. Thus, whenever the per capita growth
rate of R is a monotonically declining function of R, we expect a declining “Lotka-Volterra like”
nullcline of the resource in the phase space, provided we can cancel R from the consumption
term (here the mass-action, aNR, term). We therefore expect more complicated nullclines for
saturated consumption terms, e.g., aNR

h+R
, from which we cannot cancel R. This is explored in

Chapter 7.

When to expect the vertical dN/dt = 0 nullcline that we obtained throughout this chapter?
The Lotka-Volterra model assumes that the birth rate of the consumers increases linearly with
the per capita consumption, aR. This need not be true as a consumer’s birth rate may be a
saturation function of its consumption; at a certain level of consumption the birth rate may slow
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Figure 5.5: The Lotka Volterra model with horizontal and slanted nullclines. Red lines depict the
dR/dt = 0 nullclines, blue lines the dN/dt = 0 nullclines, and black lines trajectories. In Panels (a-c)
the non-trivial consumer nullcline is a vertical line at R = �

ca (because ✏N = 0 in Eq. (5.22)), and in
Panels (d) and (f) the non-trivial resource nullcline is a horizontal line at N = r

a (because ✏R = 0).
Panel (a) depicts the classical Lotka-Volterra model with a resource nullcline that is slanted downwards
(due to their negative density-dependence, ✏R > 0, allowing for a carrying capacity). In Panel (b) the
resource nullcline is horizontal and the consumer nullcline vertical. In Panel (c) the resource nullcline is
slanted upwards (positive density-dependence, ✏R < 0). In Panel (d) the consumer nullcline is slanted
leftwards (positive density-dependence, ✏N < 0). In Panel (e) the consumer nullcline is slanted rightwards
(✏N > 0). In Panel (f) illustrates that su�cient negative density-dependence of the resource, ✏R > 0,
can compensate for positive density-dependence of the consumer, ✏N < 0, and allow for a stable steady
state (if the trace is negative). The graphical Jacobian of the non-trivial steady state is provided in
the upper right corner, the determinant of these matrices is always positive and the sign of the trace is
indicated. The perpendicular nullclines in Panel (b) intersect in a steady state with neutral stability,
tr = 0 and det > 0, and the behavior of the model is cycles of neutral stability that are defined by the
initial condition (bullets). This Figure was with the model lotka0.R.

Because tr(J) = 0 the steady state has a “neutral” stability. The eigenvalues of this matrix are

�± = ±
p
��r = ± i

p
�r ; (5.21)

see Page 142. Because the eigenvalues have no real part the system is not structurally stable:
any small change of the system will slightly change the angle at which the nullclines intersect,
and make the equilibrium either stable or unstable. The behavior of this model are cycles of
neutral stability: any perturbation of the population densities leads to a new cycle (see Fig.
5.5b).

Generally, one should be careful with perfectly horizontal or vertical nullclines because they
result in Jacobi matrices with a zero on the diagonal, and they are typically the result of
ignoring (perhaps minor) density-dependent e↵ects. The non-trivial steady state will have the
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Figure 5.6: Enrichment of the resource increases the steady state of the consumer only. The red
lines depict the dR/dt = 0 nullcline and blue lines the dN/dt = 0 nullcline. In Panel (a) we consider
the chemostat for two di↵erent influx rates, s1 and s2, of the resource. The trajectory corresponds to
starting in the steady state with the low influx, s1, and increasing the influx to the higher s2. In Panel
(b) we consider a Lotka-Volterra model for two di↵erent carrying capacities, K1 and K2 of the resource.
The trajectory corresponds to starting in the steady state with the low K1, and increasing the influx
to the high K2. Enrichment transiently increases both resource and consumer densities, but at the new
steady state only the consumer is increased. Panel (a) was made with model chemo.R and Panel (b) with
lotka.R.

which variable is solved from which equation, the general procedure for solving a steady state
of a model with several ODEs, is to start with the most simple equations, and use the steady
state values that they deliver for solving the more complex equations.

5.3 Summary

Consumer-resource models with a mass-action killing term tend to have a stable steady state
where the consumer determines the density of the resource. Plotting the consumer on the vertical
axis and the resource on the horizontal axis, the consumer nullcline is typically a vertical line
located at the critical resource density, R⇤, required for growth of the consumers, whereas the
resource nullcline is a declining line intersecting the horizontal axis in the carrying capacity of
the resource. Lotka Volterra type nullclines are obtained with replicating resources, and when
the killing obeys a mass-action term. The shape of the nullcline of the resource then reflects the
per capita growth of the resource. Saturated killing terms have little e↵ect on the phase plane
with resources that are maintained by a source, and are expected to have a major e↵ect when
the resource is maintained by replication.

5.4 Exercises

Question 5.1. Sketch the per capita birth rate
In Eq. (5.1) we considered a case of a population of cells in a closed environment containing a fixed
amount, RT , of nutrients. The cells consume nutrients as “building blocks” upon cell division,

Enrichment for resource affects consumer steady state only 


