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Figure 4.1: The stability of a steady state is determined by the local derivative (slope) of the growth
function at the steady state. We plot the population growth rate, dN/dt = f(N), as a function of the
population size N . Panel (a) depicts the generalized logistic growth model, f(N) = rN [1 � (N/K)m]
for m = 0.5 (green), m = 1 (blue), and m = 2 (red). The blue line is the characteristic logistic
parabola. Panel (b) shows the population growth of Eq. (3.8), modeling density dependent production,
i.e., f(N) = s(1�N/k)�dN as a red line, and that of Eq. (3.4), i.e., f(N) = s�d(1+N/k)N as a blue line.
The k parameters of the latter two models have been scaled such that both models have the same steady
state K. The carrying capacities depicted in Panel (a) are all stable because @Nf(N) = � = �mr < 0
when N̄ = K. Indeed, increasing the population size in the carrying capacities results in f(N) < 0, which
is a negative feedback. In Panel (a) the trivial steady states are unstable because @Nf(N) = � = r > 0
when N̄ = 0. At the steady state N̄ = K in Panel (b), � = �d � s/k < 0 for the straight red line
corresponding to Eq. (3.8), and � = �d(1� 2K/k) < 0 for the blue parabola corresponding to Eq. (3.4).
N = 0 is not a steady state in Panel (b). Note that the dimension of the slopes, �, are time�1 in each
case. This figure was made with the model logist.R.

to obtain

dh

dt
= �h with solution h(t) = h(0)e�t , (4.4)

for the behavior of the distance, h, to the steady state. Thus, whenever the local tangent � at
the equilibrium point is positive, small disturbances, h, grow. Whenever � < 0 they decline,
and the equilibrium point is stable.

This readily confirms the intuitive approach explained in Fig. 4.1 where we used the slope,
� = f

0(N̄), to determine whether or not a steady state is stable. For example, for the logistic
equation, f(N) = rN(1 � N/K), one obtains � = r � 2rN/K. At the carrying capacity, i.e.,
at N = K, the local tangent is � = �r, and at N = 0 we obtain � = r (see Fig. 4.1a),
confirming that N = K is a stable steady state, and that N = 0 is an unstable steady state.
Similarly, for the non-replicating populations in Fig. 4.1b, we obtain that at the carrying capacity
where f(K) = 0, � = �d � s/k < 0 for the straight red line corresponding to Eq. (3.8), and
� = �d(1� 2K/k) < 0 for the blue parabola corresponding to Eq. (3.4). Since both slopes are
negative, local perturbations of size h(0), die out at a rate defined by Eq. (4.4).
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f(x̄) + f 0h

f 0 = @x f(x̄)

Figure 17.4: Linearization of a non-linear function: f(x) ' f(x̄) + @x f(x̄) (x � x̄) = f(x̄) + f 0h. The
heavy line is the local tangent f 0 = @x f(x̄) at x = x̄.

and because tr(J) = �↵ < 0 and det(J) = �� > 0 the equilibrium is stable. This method is
also explained in the book of Hastings (1997).

17.3 Linearization

Complicated non-linear functions, f(x), can be approximated by a local linearization around
any particular value of x (see the accompanying Ebook (Panfilov et al., 2016)). Fig. 17.4 shows
that the local tangent at some point linearizes the function so that nearby function values can
be estimated. This derivative can be used to approximate the curved f(x) around a particular
value x̄, and from Fig. 17.4 we can read that

f(x) ' f(x̄) + @x f(x̄) (x � x̄) ,

where h = x � x̄ is a small step in the x-direction that we multiply with the local slope, @xf(x̄),
to approximate the required change in the vertical direction. Basically, one estimates the vertical
displacement by multiplying the local slope with the horizontal displacement. A simple example
would be the function f(x) = 3

p
x (with derivative f 0 = 3/[2

p
x]). The true function values for

x = 4 and x = 5 are f(4) = 6 and f(5) = 6.71, respectively. We can approximate the latter by
writing

f(5) ' f(4) +
3

2
p

4
⇥ 1 = 6 + 3/4 = 6.75 , (17.9)

which is indeed close to f(5) = 6.71. The same can be done for 2-dimensional functions, i.e.,

f(x, y) ' f(x̄, ȳ) + @xf(x̄, ȳ) (x � x̄) + @yf(x̄, ȳ) (y � ȳ) . (17.10)
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Figure 3.4: Graphical analysis of growth functions by plotting the total population growth and death
as a function of N for Eq. (3.6) (a) and Eq. (3.7) (b). The intersects correspond to steady states.

by plotting the population growth and the population death rate in one graph (see Fig. 3.4a).
The steady state is stable because increasing N̄ results in a reduction of the population size,
i.e., dN/dt < 0, and decreasing N̄ results in population growth.

Similarly, one can allow for density dependent death, e.g.,

dN

dt
= s � dN [1 + N/k] , (3.7)

with steady states N =
�dk±

p
dk(dk+4s)
2d . Because the square root term is positive and larger

than dk, the positive root of this quadratic equation corresponds to a meaningful steady state,
and the negative root has to be ignored. Plotting the population growth, s, and the total death,
dN [1 + N/k] in one graph again reveals that this steady state is stable (see Fig. 3.4b).

3.5 Stability and return time

The steady state N = 0 in Fig. 3.1 is not stable because small perturbations increasing N makes
dN/dt > 0, which further increases N . The non-trivial steady states in Fig. 3.1 and Fig. 3.4 are
stable because increasing N makes dN/dt < 0. It appears that steady states are stable when
@N [dN/dt] < 0, and unstable when this slope is positive (see Fig. 3.5). Note that @N means the
derivative with respect to N , i.e., @x x2 = 2x and @tN = dN/dt (which is also written as N 0).

Mathematically one can linearize any continuous function f(x) around any particular value, e.g.,
x̄, by its local derivative @x f(x̄) in that point:

f(x) ' f(x̄) + @x f(x̄) (x � x̄) , (3.8)

where h = x � x̄ is a small distance in the x-direction, and f 0 = @x f(x̄) is the derivative of
f(x) with respect to x at the value x = x̄ (see Fig. 17.4 in the Appendix, and the accompanying
Ebook (Panfilov et al., 2016)). To apply this to our stability analysis one rewrites f(N) into
f(N̄ +h) where N̄ is the steady state population size and h is considered to a small disturbance
of the population density from the steady state, i.e., h = N �N̄ . Following Eq. (3.8) one rewrites
dN/dt into

dN

dt
= f(N) ' f(N̄) + @Nf(N̄) (N � N̄) = 0 + �h , (3.9)
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Figure 3.5: The stability of a steady state is determined by the local derivative (slope) of the growth
function at the steady state. Panel (a) depicts the logistic growth function f(N) = rN(1 � N/K) and
Panel (b) depicts an arbitrary growth function.

because f(N̄) = 0, and where we have defined � = @Nf(N̄) as the local derivative of f(N) at
N = N̄ , and h = N � N̄ as the distance to the steady state. Because the sum of two derivatives
is the derivative of the sum, we can apply the following trick

dN

dt
=

dN

dt
� dN̄

dt
=

d(N � N̄)

dt
=

dh

dt
, (3.10)

to obtain
dh

dt
= �h with solution h(t) = h(0)e�t , (3.11)

for the behavior of the distance, h, to the steady state. Thus, whenever the local tangent � at
the equilibrium point is positive, small disturbances, h, grow. Whenever � < 0 they decline,
and the equilibrium point is stable.

For an arbitrary growth function this dependence on the slope � is illustrated in Fig. 3.5b. This
figure shows that the unstable steady states, here saddle points, separate the basins of attraction
of the stable steady states. For example, for the logistic equation, f(N) = rN(1 � N/K), one
obtains � = r � 2rN/K. At the carrying capacity of the logistic equation, i.e., at N = K, the
local tangent is � = �r, and at N = 0 we obtain � = r (see Fig. 3.5a), arguing that N = K is
a stable steady state, and N = 0 is an unstable steady state.

The stability of a steady state can be expressed as a “Return time”

TR = � 1

�
, (3.12)

i.e., the more negative � the faster perturbations die out. For example, consider the return
time of the logistic growth equation around its carrying capacity. Above we derived that at
N̄ = K the tangent � = �r. This means that TR = 1/r, i.e., the larger r the shorter the return
time. Populations that grow fast are therefore more resistant to perturbations. The paradigm
of r-selected and K-selected species in ecology is built upon this theory. Finally, note that
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Figure 3.4: Graphical analysis of growth functions by plotting the total population growth and death
as a function of N for Eq. (3.6) (a) and Eq. (3.7) (b). The intersects correspond to steady states.

by plotting the population growth and the population death rate in one graph (see Fig. 3.4a).
The steady state is stable because increasing N̄ results in a reduction of the population size,
i.e., dN/dt < 0, and decreasing N̄ results in population growth.

Similarly, one can allow for density dependent death, e.g.,

dN

dt
= s � dN [1 + N/k] , (3.7)

with steady states N =
�dk±

p
dk(dk+4s)
2d . Because the square root term is positive and larger

than dk, the positive root of this quadratic equation corresponds to a meaningful steady state,
and the negative root has to be ignored. Plotting the population growth, s, and the total death,
dN [1 + N/k] in one graph again reveals that this steady state is stable (see Fig. 3.4b).

3.5 Stability and return time

The steady state N = 0 in Fig. 3.1 is not stable because small perturbations increasing N makes
dN/dt > 0, which further increases N . The non-trivial steady states in Fig. 3.1 and Fig. 3.4 are
stable because increasing N makes dN/dt < 0. It appears that steady states are stable when
@N [dN/dt] < 0, and unstable when this slope is positive (see Fig. 3.5). Note that @N means the
derivative with respect to N , i.e., @x x2 = 2x and @tN = dN/dt (which is also written as N 0).

Mathematically one can linearize any continuous function f(x) around any particular value, e.g.,
x̄, by its local derivative @x f(x̄) in that point:

f(x) ' f(x̄) + @x f(x̄) (x � x̄) , (3.8)

where h = x � x̄ is a small distance in the x-direction, and f 0 = @x f(x̄) is the derivative of
f(x) with respect to x at the value x = x̄ (see Fig. 17.4 in the Appendix, and the accompanying
Ebook (Panfilov et al., 2016)). To apply this to our stability analysis one rewrites f(N) into
f(N̄ +h) where N̄ is the steady state population size and h is considered to a small disturbance
of the population density from the steady state, i.e., h = N �N̄ . Following Eq. (3.8) one rewrites
dN/dt into

dN

dt
= f(N) ' f(N̄) + @Nf(N̄) (N � N̄) = 0 + �h , (3.9)
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Figure 3.5: The stability of a steady state is determined by the local derivative (slope) of the growth
function at the steady state. Panel (a) depicts the logistic growth function f(N) = rN(1 � N/K) and
Panel (b) depicts an arbitrary growth function.

because f(N̄) = 0, and where we have defined � = @Nf(N̄) as the local derivative of f(N) at
N = N̄ , and h = N � N̄ as the distance to the steady state. Because the sum of two derivatives
is the derivative of the sum, we can apply the following trick

dN

dt
=

dN

dt
� dN̄

dt
=

d(N � N̄)

dt
=

dh

dt
, (3.10)

to obtain
dh

dt
= �h with solution h(t) = h(0)e�t , (3.11)

for the behavior of the distance, h, to the steady state. Thus, whenever the local tangent � at
the equilibrium point is positive, small disturbances, h, grow. Whenever � < 0 they decline,
and the equilibrium point is stable.

For an arbitrary growth function this dependence on the slope � is illustrated in Fig. 3.5b. This
figure shows that the unstable steady states, here saddle points, separate the basins of attraction
of the stable steady states. For example, for the logistic equation, f(N) = rN(1 � N/K), one
obtains � = r � 2rN/K. At the carrying capacity of the logistic equation, i.e., at N = K, the
local tangent is � = �r, and at N = 0 we obtain � = r (see Fig. 3.5a), arguing that N = K is
a stable steady state, and N = 0 is an unstable steady state.

The stability of a steady state can be expressed as a “Return time”

TR = � 1

�
, (3.12)

i.e., the more negative � the faster perturbations die out. For example, consider the return
time of the logistic growth equation around its carrying capacity. Above we derived that at
N̄ = K the tangent � = �r. This means that TR = 1/r, i.e., the larger r the shorter the return
time. Populations that grow fast are therefore more resistant to perturbations. The paradigm
of r-selected and K-selected species in ecology is built upon this theory. Finally, note that
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because f(N̄) = 0, and where we have defined � = @Nf(N̄) as the local derivative of f(N) at
N = N̄ , and h = N � N̄ as the distance to the steady state. Because the sum of two derivatives
is the derivative of the sum, we can apply the following trick

dN

dt
=

dN

dt
� dN̄

dt
=

d(N � N̄)

dt
=

dh

dt
, (3.10)

to obtain
dh

dt
= �h with solution h(t) = h(0)e�t , (3.11)

for the behavior of the distance, h, to the steady state. Thus, whenever the local tangent � at
the equilibrium point is positive, small disturbances, h, grow. Whenever � < 0 they decline,
and the equilibrium point is stable.

For an arbitrary growth function this dependence on the slope � is illustrated in Fig. 3.5b. This
figure shows that the unstable steady states, here saddle points, separate the basins of attraction
of the stable steady states. For example, for the logistic equation, f(N) = rN(1 � N/K), one
obtains � = r � 2rN/K. At the carrying capacity of the logistic equation, i.e., at N = K, the
local tangent is � = �r, and at N = 0 we obtain � = r (see Fig. 3.5a), arguing that N = K is
a stable steady state, and N = 0 is an unstable steady state.

The stability of a steady state can be expressed as a “Return time”

TR = � 1

�
, (3.12)

i.e., the more negative � the faster perturbations die out. For example, consider the return
time of the logistic growth equation around its carrying capacity. Above we derived that at
N̄ = K the tangent � = �r. This means that TR = 1/r, i.e., the larger r the shorter the return
time. Populations that grow fast are therefore more resistant to perturbations. The paradigm
of r-selected and K-selected species in ecology is built upon this theory. Finally, note that
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Figure 3.5: The stability of a steady state is determined by the local derivative (slope) of the growth
function at the steady state. Panel (a) depicts the logistic growth function f(N) = rN(1 � N/K) and
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because f(N̄) = 0, and where we have defined � = @Nf(N̄) as the local derivative of f(N) at
N = N̄ , and h = N � N̄ as the distance to the steady state. Because the sum of two derivatives
is the derivative of the sum, we can apply the following trick

dN

dt
=

dN

dt
� dN̄

dt
=

d(N � N̄)

dt
=

dh

dt
, (3.10)

to obtain
dh

dt
= �h with solution h(t) = h(0)e�t , (3.11)

for the behavior of the distance, h, to the steady state. Thus, whenever the local tangent � at
the equilibrium point is positive, small disturbances, h, grow. Whenever � < 0 they decline,
and the equilibrium point is stable.

For an arbitrary growth function this dependence on the slope � is illustrated in Fig. 3.5b. This
figure shows that the unstable steady states, here saddle points, separate the basins of attraction
of the stable steady states. For example, for the logistic equation, f(N) = rN(1 � N/K), one
obtains � = r � 2rN/K. At the carrying capacity of the logistic equation, i.e., at N = K, the
local tangent is � = �r, and at N = 0 we obtain � = r (see Fig. 3.5a), arguing that N = K is
a stable steady state, and N = 0 is an unstable steady state.

The stability of a steady state can be expressed as a “Return time”

TR = � 1

�
, (3.12)

i.e., the more negative � the faster perturbations die out. For example, consider the return
time of the logistic growth equation around its carrying capacity. Above we derived that at
N̄ = K the tangent � = �r. This means that TR = 1/r, i.e., the larger r the shorter the return
time. Populations that grow fast are therefore more resistant to perturbations. The paradigm
of r-selected and K-selected species in ecology is built upon this theory. Finally, note that
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Figure 4.2: The return time to a steady state depends on the parameters and the density-dependent
functions. Panels (a) and (b) depict a classical r-selected and K-selected population where the natural
rate of of increase of the r-selected species (in red) is 10-fold larger than that of the K-selected species (in
blue). In Panel (a) we add noise sampled from a normal distribution with mean zero and 5% standard
deviation to the population size N(t) of both models at randomly selected time points, and observe that
the red r-selected species varies considerably less and remains closer to the carrying capacity. In Panel (b)
we draw random values for the carrying capacity from a normal distribution with 5% standard deviation
at randomly selected time points, and observe that the red r-selected species varies considerably more, as
it more rapidly approaches the new carrying capacities. Panel (c) depicts the generalized logistic growth
model of Eq. (3.11) for m = 0.5 (green), m = 1 (blue), and m = 2 (red), where we add noise sampled
from a normal distribution with mean zero and 5% standard deviation to the population size N(t) of both
models at randomly selected time points, and observe that the (red) species with the steepest slope � at
the carrying capacity has the shortest return time. This figure was made with the models logist3.R.

4.3 Return time

Note that the slopes in Fig. 4.1 do have a di↵erent steepness, i.e., that the �s di↵ers. Since � in
Eq. (4.4) define the rate at which perturbations die out, the stability of a steady state can be
expressed as a “Return time”

TR = � 1

�
, (4.5)

i.e., the more negative � the faster perturbations die out. Note that the dimension of TR are
correct: because � is a rate with dimension “time�1”, TR indeed has the dimension “time”. For
example, consider the return time of the logistic growth equation around its carrying capacity.
Above we derived that at N̄ = K the tangent � = �r. This means for return time of the logistic
growth equation that TR = 1/r, i.e., the larger r the shorter the return time. Thus, populations
that grow fast are more resistant to perturbations, which sounds intuitive.

The paradigm of r-selected and K-selected species in ecology is built upon this TR = 1/r (see
Fig. 4.2a for an example). Although an r-selected species with a 10-fold higher rate of increase
than a K-selected species varies less when we put additive white noise on the population size
(Fig. 4.2a), the r-selected species varies more when we make the carrying capacity, K, a noisy
parameter (see Fig. 4.2b). Biologically this would correspond to having a fluctuations in the
environment allowing for better and worse periods with a higher or smaller maximum population
size. Due to its faster growth rate an r-selected species traces these fluctuations, whereas a slower
growing species lags behind and “averages” more over these periods.

Thus, the natural rate of increase, r, in the logistic equation plays an important role in the
resilience of the carrying capacity to perturbations. The three growth functions of the generalized
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model of Eq. (3.11) for m = 0.5 (green), m = 1 (blue), and m = 2 (red), where we add noise sampled
from a normal distribution with mean zero and 5% standard deviation to the population size N(t) of both
models at randomly selected time points, and observe that the (red) species with the steepest slope � at
the carrying capacity has the shortest return time. This figure was made with the models logist3.R.

4.3 Return time

Note that the slopes in Fig. 4.1 do have a di↵erent steepness, i.e., that the �s di↵ers. Since � in
Eq. (4.4) define the rate at which perturbations die out, the stability of a steady state can be
expressed as a “Return time”

TR = � 1

�
, (4.5)

i.e., the more negative � the faster perturbations die out. Note that the dimension of TR are
correct: because � is a rate with dimension “time�1”, TR indeed has the dimension “time”. For
example, consider the return time of the logistic growth equation around its carrying capacity.
Above we derived that at N̄ = K the tangent � = �r. This means for return time of the logistic
growth equation that TR = 1/r, i.e., the larger r the shorter the return time. Thus, populations
that grow fast are more resistant to perturbations, which sounds intuitive.

The paradigm of r-selected and K-selected species in ecology is built upon this TR = 1/r (see
Fig. 4.2a for an example). Although an r-selected species with a 10-fold higher rate of increase
than a K-selected species varies less when we put additive white noise on the population size
(Fig. 4.2a), the r-selected species varies more when we make the carrying capacity, K, a noisy
parameter (see Fig. 4.2b). Biologically this would correspond to having a fluctuations in the
environment allowing for better and worse periods with a higher or smaller maximum population
size. Due to its faster growth rate an r-selected species traces these fluctuations, whereas a slower
growing species lags behind and “averages” more over these periods.

Thus, the natural rate of increase, r, in the logistic equation plays an important role in the
resilience of the carrying capacity to perturbations. The three growth functions of the generalized

m=2

m=0.5m=1

dN

dt
= rN(1�N/K)
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Figure 3.4: Populations with density-dependence either on the production (i.e., obeying Eq. (3.8); red
lines), or on the death rate (i.e., obeying Eq. (3.4); blue lines). The horizontal black line in Panel (b)
denotes the steady state level (i.e., the two panels are scaled di↵erently). In Panels (b) we add noise
sampled from a normal distribution with mean zero and 2.5% standard deviation to the population size
N(t) of both models at random selected time points. This figure was made with the model source.R.

population size approaches the carrying capacity (see Fig. 3.3a). Starting from a large initial
population, i.e., from N(0) > K, the population size will decline until the carrying capacity is
approached. Logistic growth is often employed to describe population growth in many biological
disciplines (ranging from ecology, epidemiology, virology to cell biology), and by deriving Eq.
(3.10) ourselves we have learned that is is indeed an excellent choice for populations having
a linear density-dependence on their per capita birth and/or death rate. Eq. (3.10) is more
convenient than the models we derived ourselves because the carrying capacity is defined by just
one of its parameters, but because Eq. (3.10) has no explicit death rate, we cannot define a life
span, and hence the R0 is not defined. One can easily extend Eq. (3.10) to allow for a non-linear
density-dependence, e.g.,

dN

dt
= rN(1 � (N/K)m) , (3.11)

where the meaning of r and K remain the same and m can be used to define a concave or convex
dependence of the per capita growth rate on the population density (Fig. 3.3c).

The two density-dependent models for populations that are maintained by a source, i.e.,
Eqs. (3.4) and (3.8), are mathematically not identical, and their steady states are defined by
quite di↵erent parameter expressions. Thus, the e↵ect of changing a parameter like the source,
s, on the steady state of the population depends on our choice of which biological process de-
pends (most strongly) on the population density. In Fig. 3.4 we depict the behavior of both
models in the presence and absence of noise. The two models are given the same source and
death rates, and the k value of the model with density-dependent death is set to such a value that
both models have the same steady state (see the R-script source.R). Thus, at low densities the
two populations have the same initial growth rate, and at high densities they approach the same
steady state (see Fig. 3.4a where the red line depicts the population with density-dependent pro-
duction, and the blue curve is the population with density-dependent death). We observe that
the population with density-dependent death approaches the steady state somewhat earlier than
the population with density-dependent production. In the presence of noise, i.e., by frequently
adding or removing a randomly drawn small value to N (with 2.5% standard deviation), we ob-
serve that the (red) population with density-dependent production is somewhat more sensitive

dN

dt
= s

⇣
1� N

k

⌘
� dN
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⇣
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N
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⌘
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Figure 4.3: The stability of a steady state is determined by the local derivative (slope) of the growth
function at the steady state. We plot the population growth rate, dN/dt = f(N), as a function of
the population size N . Panel (a) depicts the growth rate of a population with an Allee e↵ect, i.e.,
f(N) = (bf(N)g(N) � d)N , see Eq. (3.17a,ba). Panel (b) depicts an arbitrary growth function to
illustrate that each unstable steady state defines the boundary of the basic of attraction of a stable
steady state.

logistic equation in Fig. 4.1a, however, reveal that the shape of the density dependence also
plays an important role. The derivative of f(N) = rN(1 � (N/K)m) with respect to N is
f
0(N) = r � (m + 1)r(N/K)m, which at the carrying capacity becomes f

0(K) = � = �mr.
A population with a concave, m > 1, density-dependence therefore has a shorter return time
than a population with a linear (m = 1), or convex (m < 1) density-dependence (see Fig.
4.2c). Thus, carrying capacities are more stable when competition starts are relative high
population densities, i.e., when m > 1. Similarly, the two non-replicating populations, with
the same source, s, and expected life span, 1/d, and the same carrying capacity, K, also have
di↵erent return times (see Fig. 3.4b). The growth curves in Fig. 4.1b reveal the the model
with density-dependent death has a steeper slope, �, at the steady state than the model with
density-dependent production. The time series in Fig. 3.4b confirm this results in the expected
di↵erence in the return time.

We will return to the subject of return time later when we consider models composed of several
ODEs. The slope � will then be replaced by the dominant eigenvalue, �max, but Eq. (4.5) will
have the same form.

4.4 Basins of attraction

In the previous chapter we saw that positive density-dependence can give rise to an Allee-e↵ect,
meaning that a population needs to be su�ciently large before it can grow. The growth function
of that model is depicted in Fig. 4.3a, which confirms that this population has three steady states
where f(N̄) = 0. The local derivative, �, has a positive slope at the critical population size,
demonstrating that this is an unstable steady state. Since starting values below this unstable
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Smith-Martin model (first ignoring death):

22 Density dependence

of sequential population densities, Nt, and study how the per capita rate of change between
subsequent time points, i.e., (Nt+� � Nt)/Nt, depends on the previous population density,
Nt. Although the second method comes with a well-known problem (Shenk et al., 1998), it is
nevertheless still being used to detect density-dependence in time-series data (Freckleton et al.,
2006). The problem is illustrated by the following R-script (called normal.R on the website):

n <- 100; data <- rnorm(n,1,0.1);hist(data)

N <- data[1:(n-1)]; r <- (data[2:n]-N)/N

plot(N,r,type="p")

lm(r~N,as.data.frame(cbind(N,r)))

Artificial data is generated by drawing n = 100 times from a normal distribution with µ = 1
and � = 0.1, and the per capita rate of increase, r, is computed by subtracting two subsequent
data points, and dividing by the former. The relationship is plotted and quantified by linear
regression (by a call to lm()).
a. What do you expect for the relationship between r and Nt in this random data set?
b. What do you find, and how can this be?
c. Can a time-series provide solid evidence for density dependent e↵ects? The Freckleton et al.

(2006) paper provides an excellent discussion on this topic.

Question 3.9. The Fisher equation (Grind)
To model a population that is growing logistically on a one-dimensional spatial domain one can
just add a di↵usion term,

dN

dt
= rN

⇣
1� N

K

⌘
+D

@
2
N

@x2
,

where the parameter D is a di↵usion constant. This equation was introduced by the famous
Ronald Fisher in 1937 to describe the spatial spread of an advantageous allele. To study such a
PDE numerically one needs to discretize it into something like

dNi

dt
= rNi

⇣
1� Ni

K

⌘
+D(Ni�1 +Ni+1 � 2Ni) , for i = 1, 2, . . . , n

where i defines a location of a (small) compartment in space, and D describes the movement of
individuals between neighboring compartments.
a. This model is available in the website as the file fisher.R. Study how such a vector of equa-

tions can be defined in R, and realize that we have wrapped the boundaries, i.e., individuals
move from N1 to Nn and vice versa.

b. What is the behavior of the model?
c. What do you expect will happen if the model is extended with an Allee e↵ect?

Question 3.10. Cell division takes time (Grind)
A simple model for a population of proliferating cells is dN/dt = (p � d)N , which defines cells
that are dividing at a rate p and dying at a rate d. Both rates are density independent. Like all
ODEs, this model assumes that cellular division and death times are exponentially distributed,
which actually means that most cells divide and die instantaneously. Since the process of cell
division is composed of various “time consuming” phases, i.e., DNA has to be synthesized,
and chromosomes have to properly align, cell division cannot occur instantaneously, and takes
a minimal amount of time. The quite famous Smith-Martin model (Smith & Martin, 1973)
accounts for this by a implementing a fixed time delay between an exponentially distributed
“trigger” to initiate division, and the time at which the cell actually divides. This model
successfully describes the growth of tumor cells in vitro. Smith & Martin (1973) write: “Some

Cell division takes time

Conventional ODE:

dA(t)

dt
= 2pAt�� � pA(t) and

dB(t)

dt
= pA(t)� pAt��
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dB(t)
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Smith-Martin model with death:



Cell division takes time
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time after mitosis all cells enter a state (A) in which their activity is not directed towards
replication. A cell may remain in the A-state for any length of time, throughout which its
probability of leaving A-state remains constant. On leaving A-state, cells enter B-phase in which
their activities are deterministic, and directed towards replication.” Adding, an exponentially
distributed death rate (which is here not di↵erent between the A-state and B-phase), the model
can be written as a delay-di↵erential equation (DDE):

dA(t)

dt
= 2pAt��e

�d� � (p+ d)A(t) and
dB(t)

dt
= pA(t)� dB(t)� pAt��e

�d�
, (3.18)

where � is the length of the B-phase, and hence e�d� is the fraction of cells surviving the
B-phase. The total number of cells at time t is defined as N(t) = A(t)+B(t), and starting with
a quiescent population N(0) = A(0) it will take at least � time steps before the first new cells
are born. Ganusov et al. (2005) have analyzed the Smith-Martin model, and derive that after
an initial phase the total number of cells, N(t), approached a growth rate, r, that can be solved
from the equation

2pe�(d+r)� � (r + p+ d) = 0 , (3.19)

which for � = 0 indeed delivers r = p�d. The Smith-Martin model, with a function call solving
Eq. (3.19) numerically is available as the file sm.R.

Because DDEs are di�cult to solve numerically, and because fixed time delays need not be
realistic, it can sometimes be better to replace the time delay by defining a large number, n,
of “dummy” intermediate populations, Bi, with a transition rate, n

� , such that the expected
length of the delay remains � time steps, irrespective of n. For large n this model approaches
a “smooth” time delay of � time steps (smooth here means without a discontinuity). An
alternative formulation of the Smith-Martin model would therefore be

dA

dt
=

2n

�
Bn�(p+d)A ,

dB1

dt
= pA�

⇣
d+

n

�

⌘
B1 and

dBi

dt
=

n

�
(Bi�1�Bi)�dBi , (3.20)

for i = 2, 3, . . . n. This model is available as the function erl() (for Erlang distribution) in the
file sm.R.

a. What is the ODE for total number of cells in the Smith-Martin model at early time points,
i.e., for t < �? Would that be di↵erent in the model with a flexible delay?

b. What is dA/dt in the Smith-Martin model at early time points, i.e., for t < �, when we
start with a quiescent population, i.e., N(0) = A(0)? Verify your answer by running the
Smith-Martin model and the erl() model for a short period of time.

c. What is the expected time between divisions in the Smith-Martin model, and what would be
the corresponding division rate in the corresponding dN/dt = (p� d)N model? Is this faster
or slower than the division rate, r + d, predicted by Eq. (3.19)? Why?

d. What is the asymptotic behavior of the Smith-Martin model? How di↵erent is it from the
simple dN/dt = (p � d)N model, and how does this depend on the relative length of the
A-stage (1/p) and the B-phase (�)?

Question 3.11. Life stages
Consider an insect population consisting of larvae (L) and adults (A). Adults give birth to
larvae (in an asexual manner), and these larvae later mature into adults. Adults have a density
independent mortality, i.e., a given expected life span. Larvae compete with adults and have a
mortality that is dependent on the density of adults (use a simple term for this).
a. Make a model consisting of two ODEs for the growth of such a population.
b. Draw nullclines and determine the stability of all steady states.

Time delays implemented as many small steps

Smooth the time delay by many (n) small steps:

dA(t)

dt
= 2pAt��e

�d��(p+d)A(t) and
dB(t)

dt
= pA(t)�dB(t)�pAt��e

�d�
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Smith-Martin model with death:
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Exercise 5.8 


