Biological Modeling of Populations

Chapter 2: Introduction

Concepts: ODE and its solution, steady state half life, doubling time, expected life span, fitness R_{0}

$$
\begin{gathered}
\frac{\mathrm{d} P}{\mathrm{~d} t}=k-d P \quad P(t)=\frac{k}{d}\left(1-\mathrm{e}^{-d t}\right)+P(0) \mathrm{e}^{-d t} \\
\frac{\mathrm{~d} P}{\mathrm{~d} t}=k-d P=0 \quad \text { to obtain } \quad \bar{P}=\frac{k}{d}
\end{gathered}
$$

Chapter 2: Introduction
(a)

Time (t)
(b)

Time (t)
(c)

Time (t)

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=(b-d) N \quad \text { with solution } \quad N(t)=N(0) \mathrm{e}^{(b-d) t}
$$

