
Phase plane analysis and parameter estimation in R

Rob J de Boer, Theoretical Biology, Utrecht University, 2023

This tutorial describes an R-script, grind.R, that allows students and investigators whom are not
very familiar with the R language to perform phase plane analysis and parameter fitting. Phase plane
analysis is powerful graphical method to analyze the steady states of low-dimensional ODE models,
and fitting ODE models to data has become a very common practice in biology. Grind is a “wrapper”
around the commonly-used R-packages deSolve, FME and rootSolve developed by Karline Soetaert
and colleagues [1–4]. Our aim with developing grind.R was to define five easy-to-use functions:
• run() integrates a model numerically and provides a time plot or a trajectory in the phase plane,
• plane() draws nullclines and can provide a vector field or phase portrait,
• newton() finds steady states and can provide the Jacobian with its eigenvalues and eigenvectors.
• continue() performs parameter continuation of a steady state, providing a bifurcation diagram,
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
Grind’s run() function calls ode() from the deSolve library, the fit() function calls modFit() from
the FME library, and newton() and continue() call steady() from the rootSolve library. One can
get help for the library functions by typing ?..., where ... is the name of the function (e.g., ?ode).
In RStudio all options of the Grind functions are given while typing their name, e.g., typing run(

highlights all possible options of the run() function. Below we provide all options in an alphabetical
order. The following sections are tutorials illustrating the usage of Grind. Instructions for installation
are given in the final section.

1 Phase plane analysis

Lotka Volterra model. The ODEs of the model are defined in the simple notation defined for the
deSolve package. The following is an example of the Lotka Volterra model, here defined by the function
model(). This R-script is available as the file lotka.R on the website http://tbb.bio.uu.nl/rdb/grindR/:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5) # p is a named vector of parameters

s <- c(R=1,N=0.01) # s is the state

where the two lines below the function define the parameter values in the vector p, and the initial
state of the variables in the vector s. Note that the function needs a current state and returns
a list of derivatives (dR,dN). Since this is just a list of numbers, these derivatives should
be given in the same order as the variables in the state. The names model, s, and p are
the default designations for the model, state, and parameter values in all Grind functions. This
example should be self explanatory as it just defines the Lotka Volterra model dR/dt = rR(1 −
R/K) − aRN , and dN/dt = caRN − δN , with its parameter values and initial state as R-vectors,
p <- c(r=1,K=1,a=1,c=1,delta=0.5), and s <- c(R=1,N=0.01), respectively. A shiny interactive
primer on this model is available on the website: https://grind.shinyapps.io/lotka/.

The following tutorial is an example session illustrating the usage of the first four Grind functions,
by simulating and analyzing this Lotka Volterra model; see Fig. 1 for its graphical output (where the
main="text" add a title to a panel) :
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Figure 1: Numerical integration, phase plane analysis, and a bifurcation diagram of the Lotka Volterra
model. The six panels collect the graphical output of the example session listed above.

run(main="(a)") . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .run the model and make a time plot (Fig 1a)

plane() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .make a phase plane with nullclines

plane(xmin=-0.001,ymin=-0.001,main="(b)")) . . . . . . . . . . . . include the full axis in the phase plane (Fig 1b)

plane(tstep=0.5,portrait=TRUE,main="(c)") . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . make a phase portrait (Fig 1c)

plane(xmin=-0.001,ymin=-0.001,main="(d)") . . . . . . . . . . . . . . . . . . . . .make a clean phase plain again (Fig 1d)

p["K"] <- 0.75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . change the parameter K from 1 to 0.75

plane(add=TRUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . add the new nullclines (see Fig 1d)

s["R"] <- 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . change the initial state to (R=0.1,N=0.01)

run(traject=TRUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . run the model and plot a trajectory (see Fig 1d)

newton(c(R=0.5,N=0.5),plot=TRUE) . . . . . find a steady state around (R=0.5,N=0.5); see the bullet in Fig 1d

f <- newton(c(R=0.5,N=0.5)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . store this steady state in f

continue(f,x="K",xmax=2,y="N",,main="(e)") . . . . . . . . .continue this steady state while varying K (Fig 1e)

continue(f,x="K",xmax=2,y="N",step=0.001) . . . . . . . . . . . . . . . . . . . get a better value with a smaller step size

p["K"] <- 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set K to the value at which N goes extinct

plane(vector=TRUE,main="(f)") . . . . . . . . . . . . . . . . . . . . . . . . . . . . make a phase plane for this value of K (Fig 1f)

Lac-operon model. A slightly more sophisticated example shows how one can continue steady states
to make a bifurcation diagram with a saddle-node bifurcation. We use a Lac-operon model defined in
the reader of our Systems Biology course at Utrecht University. The phase plane of this example is
displayed in Fig. 2a, where bullets indicate stable steady states and circles depict unstable equilibria.
Subsequently, we start close to each of the three steady states, call the Newton-Raphson algorithm,
and store these states in the variables low, mid, and hig, respectively. Using parameter continuation
in Fig. 2b we make a bifurcation diagram in which we follow the middle steady state as a function of
the external lactose concentration, L, by a call to continue(mid,...). This R-script is available as
the file operon.R:
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Figure 2: Nullclines and a bifurcation diagram of the Lac-operon model.

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

R = 1/(1+A^n) # Repressor

dA = M*L - delta*A - v*M*A # Allolactose

dM = c0 + c*(1-R) - d*M # mRNA

return(list(c(dA, dM)))

})

}

p <- c(L=1,c=1,c0=0.05,d=1,delta=0.2,n=5,v=0.25)

s <- c(A=0,M=0)

plane(xmax=4,ymax=1.2,main="(a)",sub="Allolactose")

low <- newton(s,plot=TRUE)

mid <- newton(c(A=0.8,M=0.2),plot=TRUE)

hig <- newton(c(A=2,M=1),plot=TRUE)

continue(mid,x="L",y="A",xmax=2,ymax=4,main="(b)",sub="Lactose")

These two tutorials should be a sufficient introduction for standard phase plane analyses. The following
sections illustrate the usage of events and noise (Section 2), delay differential equations (Section 3),
vectors of equations (Section 4), and parameter estimation (Section 5). These can be read when
needed. Section 6 is a reference manual that can be consulted when required. Section 7 provides
simple installation instructions.

2 Combining numerical integration with events

The deSolve package allows one to execute discrete events that are changing the state while integrating
the model numerically by using the events argument (see the ode() manual). This remains possible
in Grind because run() passes additional options to ode() via the ellipsis (...) argument.

Grind additionally has simple option after to handle events, or change parameters, after each time
step. For instance one can stop the numerical integration when any of the variables becomes neg-
ative by after="if(min(state)<0) break" (this can also be prevented by adding the line state

<- ifelse(state < 0, 0, state) above the with-statement in the model). Another example is
after="parms[\"r\"]<-rnorm(1,1,0.1)", which sets the parameter r to a random value, drawn
from a normal distribution with a mean of one and a standard deviation of 0.1 (see the result in Fig.
3a). Note that p is called parms within run() (see the Manual), and note the backslashes in \"r\"

before the quotes around the parameter name. Since r is the first parameter, one can also just write
"parms[1]<-rnorm(1,1,0.1)" to achieve the same effect. This random resetting of r is done every
timestep (as defined by the parameter tstep in run()). Another example adds Gaussian noise to
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Figure 3: Three examples using after and/or arrest.

both variables, e.g., after="state<-state+rnorm(2,0,0.01)", after each time step (see Fig. 3b).
The rnorm(2,0,0.01) provides two random values, that are added to the two variables, respectively.
In Fig. 3b we start close to the steady state to prevent problems arising from random values setting
a population to a negative value.

One can also handle events within time steps using the option arrest, which stops the integrator at
the requested time points. Combining, after and arrest one can create events, or change parameters
at any time point, e.g., by run(50,arrest=33.14,after="if(t==33.14)state[\"N\"]<-0") one can
set the predators N = 0 at t = 33.14 (see Fig. 3c). Note again that s is called state in run(), and
mind the backslashes in \"N\". arrest should also be used if there are time-dependent if-statements
in the model, like k<-ifelse(t<tau,1,0), which sets k = 1 at all times before t = τ and sets k = 0
otherwise (here one should supply after="tau" to run() or fit() to make sure this switch happens
at the correct point in time). arrest can be a vector of time points or a vector of parameter names.
It works by creating dummy events using the events-handling of deSolve().

These examples are illustrated in the R-script events.R and Fig. 3:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5)

s <- c(R=1,N=0.01)

run(after="parms[\"r\"]<-rnorm(1,mean=1,sd=0.1)")

f <- newton(c(R=0.5,N=0.5))

run(state=f,after="state<-state+rnorm(2,mean=0,sd=0.01)",ymax=1)

# Use arrest to handle events at specific time points:

run(50,arrest=33.14,after="if(t==33.14)state[\"N\"]<-0")

# Here is an example of similar event handling in deSolve:

fun<-function(t, y, parms){y["N"]<-0;return(y)}

run(events=list(func=fun,time=33.14))

A final “event” to tweak the numerical data. To afterwards modify the numerical solution data
computed within run() one can pass on any R-command as a text with the tweak option. For instance,
run(tweak="nsol$T<-nsol[,2]+nsol[,3]"), adds a new column to the solution by summing the first
and second variable, and calls this column “T” (for total). Note that the numerical solution is called
nsol, and that the first column contains the time. This manipulated nsol table is subsequently passed
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Figure 4: Left: the graphical output of the “vector of equations” example. Right: the output of the
examples of mutating strains.

on to timePlot, or printed to screen (with the table=TRUE option in run()). This tweak option can
be very helpful when fitting data containing columns representing (transformed) combinations of the
variables of the model. The same summation can also be done by using R’s apply() to call R’s sum()
function: run(tweak="nsol$T<-apply(nsol[,2:3],1,sum))", illustrating how one can use tweak to
sum over a subset of columns, or to call any other function.

3 Delay differential equations and maps

One can study maps by simply switching to Euler integration:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dN <- r*N*(1 - N) - N

return(list(c(dN)))

})

}

p <- c(r=3.75)

s <- c(N=0.01)

data <- run(1000,method="euler",table=TRUE)

plot(data$N[1:999],data$N[2:1000],pch=".")

Be careful with using the steady state functions (newton(), continue(), and plane()) because they
are not aware of the fact that this model defines a map. Steady state values of this model will be
correct because of the -N in the equation (i.e., dN=0 has the same solution as Nt+1 = rNt(1 − Nt)),
but the reported eigenvalues no longer define the stability of steady states.

One can study delay differential equations (DDEs) because the deSolve package implements a general
solver (dede()) using the same syntax as the general ODE solver (ode()). For instance, the Lotka
Volterra model with delayed growth of the predator,

dR(t)

dt
= rR(t)(1 −R(t)/K) − aR(t)N(t) , and

dN(t)

dt
= caR(t− ∆)N(t− ∆) − δN(t) ,

would look like:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

tlag <- t - Delta

if (tlag < 0) lags <- c(0,0) # no initial predation

else lags <- lagvalue(tlag) # returns lags of R and N

dR <- r*R*(1 - R/K) - a*R*N

dN <- a*lags[1]*lags[2] - d*N

return(list(c(dR, dN)))

})
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}

p <- c(r=1,K=1,a=1,c=1,d=0.5,Delta=10)

s <- c(R=1,N=0.1)

run(delay=TRUE)

where the option delay tells Grind to use the dede() solver. This would correspond to the situation
where a prey at carrying capacity starts to be eaten by a predator at time zero, but the predator will
only start to grow Delta time steps later. The deSolve function lagvalue() stores previous values of
R and N in a vector (that is called lags[] here) that can be indexed to obtain the time lagged R and
N values. Read the deSolve manual for further documentation and/or type ?dede for help. Please
note that the steady state functions (newton(), continue(), and plane()) should not be called with
models containing calls to lagvalue(). Fitting DDE models to data should work fine (but solving
DDEs is notoriously tricky).

4 Vectors of equations

Here is an example of a model with n = 3 prey populations, Ri, that are competing with each other
via a logistic term (see the left panel in Fig. 4). Each prey has its own predator Ni,

dRi

dt
= biRi(1 −

∑
Ri) − d1Ri − aRiNi and

dNi

dt
= aRiNi − d2Ni .

In the R-script vector.R we draw random prey birth rates, bi, from a normal distribution:

model <- function(t, state, parms){

with(as.list(c(state,parms)),{

R <- state[1:n]

N <- state[(n+1):(2*n)]

S <- sum(R)

dR <- b*R*(1-S) - d1*R - a*R*N

dN <- a*R*N - d2*N

return(list(c(dR,dN)))

})

}

n <- 3 # number of species

b <- rnorm(n,mean=1,sd=0.1) # b is a global parameter

p <- c(d1=0.1,d2=0.2,a=1) # other parameters

R <- rep(0.1/n,n) # initial condition of R

names(R) <- paste("R",seq(1,n),sep="") # Name them R1, R2, ... Rn

N <- rep(0.01/n,n) # initial condition of N

names(N) <- paste("N",seq(1,n),sep="") # Name them N1, N2, ... Nn

s <- c(R,N) # combine R and N into s

run(main="(a)")

The result is show in Fig. 4a.

Mutations after each time step. Combining vectors and events one can model a series of evolving
bacterial strains with increasing replication rates (see Fig. 4b). Consider the following model,

dNi

dt
= biNi(1 −

∑
Ni) − dNi , for i = 1, 2, . . . , n

and let strain Ni+1 evolve from strain Ni at a mutation rate µ. When the expected number of mutants,
µNi, is smaller than a single bacterium we calculate the probability that a single mutant appears, and
add a single cell to Ni+1 (and subtract it from Ni). Otherwise the expected number of mutants is
added to strain Ni+1 (and subtracted from Ni). This is realized by using after to call the function
mutate(). In the R-script evolve.R birth rates bi of the strains increase linearly from bi = 1 to
bn = 2:

model <- function(t, state, parms){
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Figure 5: Fitting the Lotka Volterra model to data. Lines show the model for the best estimated
parameters, and the symbols depict the data.

with(as.list(c(state,parms)),{

N <- state[1:n]

S <- sum(N)

dN <- b*N*(1-S/K) - d*N

return(list(c(dN)))

})

}

mutate <- function(t, state, parms){

nmut <- rep(0,n+1)

emut <- parms["mu"]*state # Expected number of mutants

nmut[2:(n+1)] <- ifelse(emut>1,emut,ifelse(runif(n)<emut,1,0))

state <- state + nmut[1:n] - nmut[2:(n+1)]

return(state)

}

n <- 10 # number of variants with

b <- seq(1,2,length=n) # increasing birth rates

p <- c(d=0.1,K=5000,mu=0.001) # other parameters

s <- rep(0,n) # set all variables to 0

s[1] <- 1 # set first to 1

names(s) <- paste("N",seq(1,n),sep="") # add names

run(1000,ymax=5000,after="state<-mutate(t,state,parms)",main="(b)")

5 Parameter estimation

One can fit the parameters of a model to data using the function fit(), which minimizes the sum of
the squared residuals (SSR) between the data and the model. When this function is called without any
options it is assumed that there is data.frame called data with column names corresponding to the
variables of the model, and fit() will then use the state, s, and all parameters, p, as an initial guess
for fitting the data. We illustrate this using the Lotka Volterra model after creating an artificial data
set using run(table=TRUE). In the example we randomize the initial condition, s, and parameters, p,
using a normal distribution (rnorm()) before we fit the model to the data (see Fig. 5A).

fit() internally calls the function modFit from the FME package (use ?modFit to see all options), and
delivers an object providing the estimated parameters, confidence ranges, and correlations between
the parameters. Typing fit()$par just returns the estimated parameters (see below). Use the option
free to explicitly define which parameters are “free” and should be estimated (free is a vector of
names). The boolean option initial can be used to read the initial condition from the data (instead
of estimating it).
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One can fit simultaneously several data sets by providing a list of data sets to the first datas option (see
the fit(list(dataR,dataN)) example). When fitting several data sets, we need to better distinguish
between free and non-free parameters, because they could differ between the data sets or be the same.
Grind defines free parameters that are shared between all data sets as free, and free parameters
that differ between the data sets as differ. Both are vectors of parameter names (and Grind makes
sure they do not overlap). Grind defines non-free parameters that differ between the data sets as
fixed. Hence all parameters that are not in the vectors free, differ or fixed, are not fitted
and are shared between the data sets. Note that fitting several data sets together actually requires
Maximum Likelihood procedures that are not implemented in Grind, because different data sets may
have different amplitudes and variances. Using Grind’s Least squares procedures for fitting data sets
together therefore assumes that they all have the same “nature”, such that the goodness of a fit can
be described as the sum of their individual SSRs.

The usage of free and differ is illustrated in the f <- fit(list(data,data2), free=free, differ

=c("R","N","K")) example given below. In this example differ is just a vector of parameter names.
In case one needs to supply an initial guess for the different parameters in each data set, one should de-
fine differ as a named list, containing the various guesses (see the differ<-list() example below).
The usage of fixed is illustrated in the lines below fixed<-list().

Finally, we show how one can bootstrap the data by sampling (with recruitment) from every individual
data set, and re-fit the samples using the best parameters as an initial guess. Another important option
is logpar which allows one to fit the logarithm of the parameters (rather than their true values), which
can help finding the true optimum when parameters have very different values. If worried about finding
the true optimum, one can pass the option method="Pseudo" to modFit (see the modFit manual).

The following script is available as the file lotka fit.R:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5)

s <- c(R=1,N=0.01)

data <- run(20,table=T) # Make a data set

s <- s*abs(rnorm(2,1,0.1));s # Random guess for initial condition

p <- p*abs(rnorm(5,1,0.1));p # Random guess for parameters

f <- fit() # Fit data with all 7 parameters free

summary(f) # Check confidence ranges, etcetera

p <- f$par[3:7];p # Store estimates in p

p <- p*abs(rnorm(5,1,0.1));p # Another random guess for the parameters

free <- c(names(s),names(p)) # Provides the names of free parameters

f <- fit(data,free=free) # Fit the data again

dataR <- data; dataR$N <- NULL # Make two data sets one with R,

dataN <- data; dataN$R <- NULL # and the other with N,

f <- fit(list(dataR,dataN),free=free) # which gives the same result

p <- c(r=1,K=1,a=1,c=1,delta=0.5) # Start again with same parameters

p["K"] <- 0.75 # Change K,

s <- c(R=0.5,N=0.05) # and the initial condition,

data2 <- run(25,table=T) # and make a new data set

s <- c(R=0.75,N=0.02) # An "average" guess for the 2 initial conditions

p <- p*abs(rnorm(5,1,0.1));p # A random guess for the parameters

free <- names(p)[-2] # Remove K from the free parameters

par(mfrow=c(1,2)) # Show two panels next to each other

f <- fit(list(data,data2),free=free,differ=c("R","N","K"),main=c("A","B"))

f$par # Show parameters only
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# Provide individual initial guesses as a list:

differ <- list(R=c(0.9,0.55),N=c(0.02,0.04),K=c(1.1,0.7))

f <- fit(list(data,data2),free=free,differ=differ,main=c("A","B"))

# Provide fixed parameters as a list:

fixed <- list(R=c(1,0.5),N=c(0.01,0.05))

differ <- "K" # one unknown parameter (K)

free <- names(p)[-2];free # and four shared unknown parameters

f <- fit(list(data,data2),free=free,differ=differ,fixed=fixed,main=c("A","B"))

# The latter is identical to taking the initial condition from the data:

f <- fit(list(data,data2),free=free,differ=differ,initial=T,main=c("A","B"))

# Finally perform a 100 bootstrap simulations:

f <- fit(list(data,data2),free=free,differ=differ,fixed=fixed,main=c("A","B"),bootstrap=100)

6 Manual

A model can be solved numerically from the initial state by calling run(), and the output will be a
timeplot, trajectory or table. Next to the graphics output, run() returns the final state attained by
the simulation (or all data when table=TRUE). The former can be helpful if one wants to continue
from the previous state (e.g., f<-run(); f<-run(state=f)). The full definition of run() is:

run <- function(tmax=100, tstep=1, state=s, parms=p, odes=model, ymin=0, ymax=NULL,

log="", xlab="Time", ylab="Density", tmin=0, draw=lines, times=NULL, show=NULL,

arrest=NULL, events=NULL, after=NULL, tweak=NULL, timeplot=TRUE, traject=FALSE,

table=FALSE, add=FALSE, legend=TRUE, solution=FALSE, delay=FALSE, lwd=2,

col="black", pch=20, ...)

run() calls the ode() function from the deSolve package. Additional arguments, like main and sub,
are passed on to ode() and plot() via the (...).

The phase plane function plane() sets up a space with the first variable on the horizontal axis, and
the second on the vertical axis. The full definition of plane() is:

plane <- function(xmin=0, xmax=1.1, ymin=0, ymax=1.1, xlab="", ylab="", log="",

npixels=500, state=s, parms=p, odes=model, x=1, y=2, time=0, grid=5, eps=0,

show=NULL, addone=FALSE, portrait=FALSE, vector=FALSE, add=FALSE, legend=TRUE,

zero=TRUE, lwd=2, col="black", pch=20, ...)

Additional arguments (...) are passed on to run() (for the phase portrait) and to plot() (e.g., for
main and sub). Note that plane() calls the “vectorized” R-function outer(), which implies that if
one calls functions in the ODEs they should also be vectorized, e.g., one should use pmax() instead of
max(). There is an extension, cube.R, for 3-dimensional nullclines.

The function newton() finds a steady state from a nearby initial state, and can report the Jacobi
matrix with its eigenvalues and eigenvectors. The full definition of newton() is:

newton <- function(state=s, parms=p, odes=model, time=0, positive=FALSE,

jacobian=FALSE, vector=FALSE, plot=FALSE, value=FALSE, addone=FALSE, ...)

newton() calls the function steady() from the rootSolve package (which calls stode()). Additional
arguments (...) are passed on to both of them. newton() needs an initial state close to an equilibrium
point.

The function continue() continues a steady state by changing a “bifurcation” parameter defined by
the horizontal axis of the bifurcation diagram. The full definition of continue() is:
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continue <- function(state=s, parms=p, odes=model, step=0.01, x=1, y=2,

time=0, xmin=0, xmax=1,ymin=0, ymax=1.1, xlab="", ylab="", log="",

col=c("red","black","blue"), lwd= c(2,1,1), addone=FALSE, positive=FALSE,

nvar=FALSE, add=FALSE, ...)

continue() calls the function steady()from the rootSolve package (additional arguments (...) are
passed on), and needs an initial state close to an equilibrium point. Note that there is much more
proper software for bifurcation analysis like XPPAUT or MatCont, which reports the type of bifurca-
tions encountered, and automatically continues all branches of branch points. Additionally, deBif is
an Grind-like R-package allowing for interactive bifurcation analysis using a shiny-based interface.

The function fit() fits a model to data by non-linear parameter estimation. The output is an object
containing the estimated parameters, the summed squared residuals, confidence ranges, and correla-
tions (see the modFit() manual). The data and the model behavior for its best fit parameters are
depicted in a timeplot. Its full definition is:

fit <- function(datas=data, state=s, parms=p, odes=model, free=NULL, differ=NULL,

fixed=NULL, tmin=0, tmax=NULL, ymin=NULL, ymax=NULL, log="", xlab="Time",

ylab="Density", bootstrap=0, show=NULL, fun=NULL, costfun=cost, logpar=FALSE,

lower=-Inf, upper=Inf, initial=FALSE, add=FALSE, timeplot=TRUE, legend=TRUE,

main=NULL, sub=NULL, pchMap=NULL, ...))

fit() calls the function modFit() from the FME package (which calls modCost()). Additional argu-
ments (...) are passed on to both of them, and to run() and ode().

Finally the internal function timePlot() can be used to plot data and is defined as:

timePlot <- function(data, tmin=0, tmax=NULL, ymin=0, ymax=NULL, log="",

xlab="Time", ylab="Density", show=NULL, legend=TRUE, draw=lines, lwd=2, add=FALSE,

main=NULL, sub=NULL, colMap=NULL, pchMap=NULL, ...)

These functions have many options (arguments). Fortunately most of them have good default values,
and can typically be omitted. Since many options are the same in the five Grind functions, we list
them alphabetically, giving their default values, and a short explanation:
• add=FALSE defines whether a new plot should be created when drawing new graphics. When

add=TRUE Grind assumes the definition of the axes have not been changed. Used by continue(),
run(), and plane().

• addone=FALSE allows for a “zero” on logarithmic axis (like the log1p() function in R). Setting
addone=TRUE and xmin or ymin to one (or 0.99) allows one to include steady states in which one
of the variables is zero in nullclines and parameter continuations. Used by plane(), continue(),
and newton().

• after=NULL defines commands to be executed after each time step of a numerical integration, e.g.,
after="parms[1]<-rnorm(1,1,0.1)", draws a new random value of the first parameter after each
time step (as defined by tstep). See Section 2; used by run() and fit().

• arrest=NULL defines a vector of values, or parameter names, defining time points where the in-
tegrator should stop, and report the current state (i.e., these time points are added to the times

vector of ode()). This can be helpful for running (and fitting) models with if statements, or other
discontinuous time points, e.g., arrest=c("T1","T2")). Used by run() and fit().

• bootstrap=0 defines the number of samples to be taken randomly from the data (with replacement).
This prints a summary and adds an element bootstrap to the modFit list, containing a matrix with
all parameter estimates. Use pairs(f$bootstrap) to see the correlations between the estimates.
Used by fit().

• col="black" in run() and plane() defines the color of trajectories.
• col=c("red","black","blue") in continue() defines the color of stable, neutral, and unstable

steady states, respectively. Alternatively, when nvar=TRUE one can use this option to color a steady
state by its number of non-zero variables (e.g., col=colors would do if you like Grind’s default
colors).
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• colMap=NULL is vector of integers used to re-map the colors, e.g., colMap=c(3,2,1) reverts the
order of the first three colors. Note that grind.R defines its own color table (of dark colors that
print well). Used by continue(), plane() and run().

• costfun=cost allows one to redefine the cost-function measuring the distance between the model
and the data. This can be useful when different data sets need different models. The default cost-
function loops over the various data sets, and calls run() for each of them. That call can easily be
adapted for each data set (the index of the loop is called iset). Used by fit().

• datas=data in fit() defines the name of the data frame containing the data, or defines a list of
data frames.

• delay=FALSE tells Grind whether or not to call the DDE solver from the deSolve package. The
time delay(s) in the model are to be defined by calling the lagvalue() function from the deSolve

package. This can only be used in run() and fit() and should also not be used in combination
with phase plane analysis, nor with searching steady states (newton(), continue()). See Section
3; used by run() and fit().

• differ=NULL defines the names of the free parameters that differ between the data sets and need
to be fitted separately. differ can also be a named list containing the individual guesses for each
data set. (One can use makelist(differ,state,parms,nsets) to set up such a list). See Section
5; used by fit().

• draw=lines draws time plots as continuous lines. The alternative is draw=points. This tells
timePlot() to use the R-functions lines() or points() to plot the columns of the data frame.
Used by run() and fit().

• eps=0 is a dirty little shortcut in plane() to include or exclude the axis in the drawing of nullclines.
The contour line algorithm used by Grind has difficulties drawing nullclines at the boundaries of
the space. eps van be used to add a small positive to negative to change both xmin and ymin a
little from zero. Used by plane().

• events is an option that can be passed on to deSolve to handle events during numerical integration.
Type events? for help. Used by run().

• fixed=NULL defines a named list of the non-free parameters that differ between the data sets and
have known fixed values. (One can use makelist(fixed,state,parms,nsets) to set up such a
list). See Section 5; used by fit().

• free=NULL defines the names of the ‘free’ parameters to be fitted. By default free equals c(names(state),
names(parms)). See Section 5. Used by fit().

• fun=NULL defines a function to transform the data and (numerical) solution before fitting. Used by
fit().

• grid=5 defines the number of grid points for which the vector field or phase portrait is drawn. Used
by plane().

• initial=FALSE allows one to read the initial condition from the data (and not estimate it). See
Section 5. Used by fit().

• jacobian=FALSE defines whether or not newton() should print the Jacobian.
• log="" can be used to define logarithmic axis (this is passed on to the R-function plot()).

log="xy" makes both axes logarithmic. Used by continue(), plane() and run().
• logpar=FALSE can be used to fit the logarithm of the parameters, rather than their true values.

This can be very useful when the parameters have very different values. Grind will report the true
values that are estimated, but modFit() returns the logarithmic values. Used by fit().

• lower=-Inf defines the lower limit of the free parameters. One can set lower=0 to keep all free
parameters positive. Otherwise, the order of values in lower should be the same as the names of the
parameters in free. This becomes complicated when there are shared and different free parameters
(as defined by free and differ). The order in lower should then first be the parameters in free

and then those in differ. The latter are automatically repeated for every additional data set if
the length of lower equals the sum of the lengths of free and differ. Thus, the length of lower
is either 1, length(free)+length(differ) or length(free)+n*length(differ), where n is the
number of data sets.

• lwd=2 sets the line-width of graphs. Used by continue(), plane() and run().
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• main=NULL allows one to put a title at the top of the graph (this is passed on to the R-function
plot() by all Grind functions). In fit() main can be a vector for the titles of all plots when
multiple data sets are being fitted. Note that titles are set in a plain font (to set that back to R’s
default bold face, change the two font lines in the grind.R file). Used by continue(), fit(),
plane() and run().

• npixels=500 defines the resolution of the phase space in plane(). Setting it to a lower value speeds
up the drawing of nullclines.

• nvar=FALSE asks continue() to color steady state by their stability. By default stable steady state
are depicted as heavy red lines and unstable steady states by thin blue lines (which can be changed
with the col and lwd options of continue()). If nvar=TRUE the states are colored by their number
of non-zero variables (use col to define these colors), and their stability remains indicated by the
line width.

• odes=model defines the name the model. Used by all Grind’s functions.
• parms=p define the name of the parameter vector. Used by all Grind’s functions.
• pch=20 defines the symbol to be plotted at the start of trajectories. Used by plane() and run().
• pchMap=NULL can be used to re-map the symbols, e.g., pchMap=c(3,2,1) reverts the order of the

first three R-symbols (see pch in the R-function points()). Used by run().
• plot=FALSE defines whether or not newton() depict the steady state by a symbol in the phase

plane.
• portrait=FALSE defines whether or not plane() should include a phase portrait.
• positive=FALSE, setting positive=TRUE restricts the search of newton() and continue() to pos-

itive steady states only.
• show=NULL defines the variables appearing in a time plot, fit, or phase plane. By default all

variables are shown. By explicitly providing a list of names one can define subsets to be plotted,
e.g., show=c("P","Q"). Used by run()and plane().

• solution=FALSE defines whether or not the model provides time derivatives (default), or a full
solution. This can only be used in run() and fit() and should obviously not be used in combination
with phase plane analysis, nor with searching steady states. Models returning a solution obey the
same format as the ODE models required by deSolve (but can return a vector of values and not
necessarily a list). Used by run() and fit().

• state=s define the name of the state vector. Used by all Grind’s functions.
• step=0.01 defines the maximum change of the bifurcation parameter in a bifurcation diagram.

When the axis is linear the parameter is increased, or decreased, in steps not exceeding step × xmax.
When the axis is logarithmic the parameters is maximally multiplied by 1+step. continue() will
decrease the step size to maximally step/100 when it looses the steady state. Used by continue().

• sub=NULL allows one to put a subtitle at the bottom of the graph (this is passed on to the R-function
plot()). Note that titles are set in a plain font (to set that back to bold face, change the two font

lines in the grind.R file). Used by continue(), plane() and run().
• table=FALSE asks run() to return a table with the values reported by the integrator. Used by

run().
• time=0 defines the time point for which nullclines are computed and steady states are computed

(for non-autonomous ODEs). Used by continue(), newton()and plane().
• times=NULL can be used to define the time points at which the numerical integrator generates

output (even though this is typically done by setting tstep). Used by run().
• timeplot=TRUE asks run() to make a time plot. Used by run()and fit().
• tmax=100 set the integration time. Used by run()and fit().
• tmin=0 allows one to start a specific time point (which can be convenient when a run is continued).

Used by run().
• traject=FALSE asks run() to draw trajectory in an existing phase plane. Used by run().
• tstep=1 set the reporting interval of numerical integrations. One can also provide a vector of time

points where the intergrator should provide output with the times option (see the ode() manual).
Used by run()and fit().

• tweak=NULL allows one to modify the data delivered by run(). For instance one can add columns
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that can be fitted to data, e.g., tweak<-"nsol$T<-nsol$R+nsol$N" to sum R and N into a new
column T . One can also transform predictions from the model before they are fitted to data that
is already transformed. Used by run() and fit().

• upper=Inf defines the upper limit of the free parameters. One can set upper=10 to give all free
parameters a maximum value of 10. Otherwise, the order of values in upper should be the same as
the names of the parameters in free. This becomes complicated when there are shared and differ-
ent free parameters (as defined by free and differ). The order in upper should then first be the
parameters in free and then those in differ. The latter are automatically repeated for every addi-
tional data set if the length of upper equals the sum of the lengths of free and differ. Thus, the
length of upper is either 1, length(free)+length(differ) or length(free)+n*length(differ),
where n is the number of data sets.

• x=1 define the variable on the horizontal axis of phase planes and bifurcation diagrams. One can
also use the names of the variables to define the axes, e.g., x="R". Used by continue()and plane().

• xlab="Time" or xlab=variable allows one to redefine the label of a horizontal axes. Used by
continue(), plane() and run().

• xmax=1.1 define the maximum of vertical axes of time plots phase planes and bifurcation diagrams.
Used by continue()and plane().

• xmin=0 define the origin of the horizontal axis of phase planes and bifurcation diagrams. Used by
continue()and plane().

• y=2 define the variable on the vertical axis of phase planes and bifurcation diagrams. One can also
use the names of the variables to define the axes, e.g., y="N". Used by continue()and plane().

• ylab="Density" or ylab=variable allows one to redefine the label of a vertical axes. Used by
continue(), plane() and run().

• ymax=1.1 define the maximum of the vertical axis of time plots, phase planes and bifurcation
diagrams. Used by continue(), plane() and run().

• ymin=0 define the origin of the vertical axis of phase planes and bifurcation diagrams. Used by
continue()and plane().

• value=FALSE By default newton() returns a steady state (after printing its stability). Setting
value=TRUE asks newton() to return the largest eigenvalue.

• vector=FALSE defines whether or not plane() should include a vector field.
• vectors=FALSE defines whether or not newton() should print the eigenvectors.
• zero=TRUE draws the phase plane for all variables other than x and y set to zero (important when

drawing nullclines of variables not appearing on the axes). Used by plane().
• ... can be used to define parameters that are passed on to other functions

7 Installation and startup

The very first time Grind is used one needs to install the Soetaert libraries into the R-environment, e.g.,
install.packages(c("deSolve", "rootSolve", "FME") in R, or Install Packages in the Tools

menu of RStudio. After downloading grind.R one can include the grind.R environment by typing
source("grind.R"). In RStudio one can also open grind.R in one tab (and “source” it) and open the
model in another tab. The R-scripts can be found on the webpage: https://tbb.bio.uu.nl/rdb/grindR/.

For example, download the R-codes grind.R and lotka.R in a local directory, and open them in
RStudio. It may be convenient to set the working directory to the folder where the R-codes were
stored (Set working directory in the Session menu of RStudio). First “source” the grind.R file
(button in right hand top corner) to define the Grind functions. Then click the other tab, and select
the function model() by highlighting everything up to the closing curly bracket, and execute this
by clicking the Run button (or typing Control Enter). Subsequently proceed through that file by
running it line-by-line (using Control Enter), to see what is happening, and become familiar with
the behavior of the Grind functions.
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A Appendix

A.1 What’s in the box?

The files on the http://tbb.bio.uu.nl/rdb/grindR/ website provide:
app.R . . . . . . . . example for making an app (see the website https://grind.shinyapps.io/lotka/)
bbox.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . examples for setting the margins (using par())
chaos.R . . . an example of 3-dimensional nullclines (using cube.R), a Takens reconstruction of a

chaotic attractor, and a bifurcation diagram formed by continuing the period doubling
cascade of a limit cycle

cube.R . . . . . . . . .an extension of Grind defining cube() and run3d() for plotting 3-dimensional
nullclines and trajectories

delay.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an example of a DDE (delay differential equation)
events.R . . . . . . . . . . . . . . . . . . . . . . . . . . . examples of event handling using the option after in run()

evolve.R . . . . . . . . . . . . . . . . an example using arrays of ODEs and implementing random mutations
grind.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Grind wrapper around the Soetaert libraries
logisticMap.R . . . . . . the Logistic map, a Takens reconstruction of its chaotic attractor, and its famous

bifurcation diagram
lotka.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Lotka-Volterra model defined in the deSolve format
lotka.ipynb . . . . . . . . . . . . . . . . phase plane analysis of the Lotka-Volterra model in a jupyter notebook
monod.R . . . . . . . . . . . . . . . . a Monod saturated predator-prey model defined in the deSolve format
operon.R . . . . . . . . . a model of the Lac-operon illustrating the usage of continue() revealing two

saddle-node bifurcations
README . . . . . . . . . . . . . . . . . . . . . . a text file with some instructions and a history of Grind versions
separatrix.R an example for drawing a stable manifold by starting on the corresponding eigenvector,

and integrating backwards
solution.R . . . . . . . . . . . . . . . . . . an example of a model() returning a solution rather than derivatives
tutorial.pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Grind manual
vector.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an example with arrays of ODEs

A.2 Grind extensions

There is currently only one extension (cube.R) which uses the plot3D R-library to define a function for plotting
3-dimensional nullclines (cube()) and a function for plotting 3-dimensional trajectories (run3d()). The syntax
of these functions is similar to that of plane() and run(), respectively. See the cube.R script for some help on
the 3D projection.
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