
Exam Biological Modeling (B-B2THEC05 & B-MBIMOD) 11 January 2024

Question 1. Basic skills (10 points)

a. Compute the non-trivial steady state of the following model,

dX

dt
= a− bX − cXY and

dY

dt
= cXY − dY .

X = d/c and Y = a/d− b/c.
b. Define f(X,Y ) = dX/dt = a−bX−cXY . What are the partial derivatives of f(X,Y ) with respect

to X and Y ?
∂Xf() = −b− cY and ∂Y f() = −cX

c. Sketch the nullcline of dX/dt = a− bX − cXY in the positive domain. Help yourself by searching
for horizontal and vertical asymptotes, and intersection points with the axes (show these results).
See the resource nullcline in Fig. 5.1. The vertical axis is a vertical asymptote. The horizontal asymptote is

Y = −b/c, and the nullcline intersects the horizontal axis at X = a/b.

d. Sketch the output of the following script:
model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dx <- a*x + b*y

dy <- c*x + d*y

return(list(c(dx, dy)))

})

}

p <- c(a=-2,b=1,c=1,d=-2)

s <- c(x=0,y=0)

plane()

The plot shows a red line with slope 2x and a blue line with slope 0.5x, both originating in the origin.

e. Determine the stability of the steady state indicated by the bullet in the following resource, R,
consumer, N , model using a graphical Jacobian. Don’t forget to show this Jacobian!
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The signs of the Jacobian are J =
(− −
+ 0

)
.

Question 2. Essential resources (10 points)
For a consumer requiring sufficient consumption of two resources for its reproduction we have written:

dN

dt
=
(
β

c1R1

h1 + c1R1

c2R2

h2 + c2R2
− δ
)
N ,

where β is a maximum birth rate per day, δ defines the daily death rate, and the ciRi terms define
the daily amount of resource ingested per consumer.



a. What is the parameter h1 representing in biological terms?
When c1R1 = h1 (and c2R2 � h2) the birth rate is β/2. In other words, h1 is the daily consumption of R1

required for a half-maximal birth rate.
b. What is the minimum concentration of R1 that this species requires to maintain itself?

Sending R2 →∞ and solving

β
c1R1

h1 + c1R1
− δ > 0 yields R1 >

h1
c1(β/δ − 1)

.

c. Would it be possible for a second species with a lower fitness, R02 = β2/δ2 < R01 = β/δ, to invade
into the non-trivial steady state of R1, R2 and N1? Explain your answer in less than 50 words.
Yes, this is possible when the second species had higher consumption rates and/or lower saturation constants.

Question 3. Bacterial cross-feeding (10 points)
We discussed the following model for cross-feeding in the book. For simplicity each bacterial species
feeds upon a unique resource in this model:

dNi

dt
= (1− αi)biRiNi − wNi ,

dRi

dt
= w(R̂i −Ri)− biRiNi +

∑
j

SijαjbjRjNj ,

where Ri defines the concentration of resource i in a chemostat, Ni defines the scaled concentration of
bacteria consuming resource i, bi is a mass-action consumption rate (also defining the birth rate of the
consumer), αi defines a fractional “leakage” parameter of metabolic byproducts, and w is the wash-out
rate from the chemostat. The R̂i parameters define the concentration of resource i in the fluid flowing
into the chemostat (where R̂i = 0 for the metabolic byproducts). Finally, the stoichiometric matrix
Sij defines whether the ith metabolic byproduct is produced when metabolite j is consumed.

Construct a specific example of this model for the situation with a single resource in the source, e.g.,
table sugar (saccharose), which is bi-saccharide composed of glucose and fructose, and a bacterial
species using half of this sugar (e.g., glucose) for this own growth, while leaking the other (e.g.,
fructose) into the environment. Define a second bacterial species fully using the other component
(e.g., fructose) for its growth. In the original model the contribution of compounds within a resource
was scaled by their energy content, which had to be conserved, i.e., αi < 1. Here we can assume that
the two components are equally nutritious, i.e., α1 = 0.5. Define the new model by writing out all
equations and removing the sum term.
The equations for the resources are

dR1

dt
= w(R̂1 −R1)− b1R1N1 and

dR2

dt
= αb1R1N1 − b2R2N2 − wR2 ,

while those for the bacteria are

dN1

dt
= αb1R1N1 − wN1 and

dN2

dt
= b2R2N2 − wN2 ,

where R1 is the bi-saccharide, R2 is fructose, N1 grows on glucose and N2 grows on fructose, and α = 0.5. Note

by scaling differently we can also set α = 1.

Question 4 for bachelor students (10 points)
We used the sigmoid predator-prey model to illustrate several bifurcations:

dR

dt
= rR(1−R/K)− aR2N

h2 +R2
en

dN

dt
=

caR2N

h2 +R2
− dN .

An example of its nullclines are shown on the left, a bifurcation diagram is shown on the right:
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We have covered the following bifurcations: Hopf, transcritical, saddle-node and pitchfork. Name all
bifurcations that you see happening in the bifurcation diagram when K is increased (name them in
the correct order). Shortly explain what happens for each of these bifurcations (e.g., provide little
sketches).
Transcritical: the predator can invade, Hopf: the non-trivial stable spiral point becomes unstable, and Hopf:

the unstable non-trivial spiral point becomes stable.

Question 4 for master students: Make a model (10 points)
Consider bacteria that are introduced into a closed well-mixed medium. The medium contains K µg
of an essential compound that is incorporated when bacteria divide. This division rate is limited by
this compound, and obeys a conventional Monod saturation. Each bacterium contains c � K µg of
this compound and all of this is released when they die. The bacteria produce a toxin that increases
their own death rate. Write a natural model for the concentration of the compound, the bacteria, and
the toxin in the medium.
Free nutrients: F = K − cB. Toxin: dT/dt = pB − δT . Bacteria: dB/dt = bBF

h+F − dB(1 + eT )


