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This article evaluates evolutionary properties of the transition from RNA primary
sequence to RNA secondary structure. It focuses on the restrictions that the
conservation of a protein code in an RNA sequence puts on its potential to evolve
towards a specific secondary structure. Restricting the mutations to those that do not
affect the coding for a protein restricts both the accessibility and the connectivity of
the sequence space. The accessibility is restricted because only certain point
mutations are allowed. The connectivity is restricted because no insertions and
deletions are allowed. Simulating an evolutionary search process for a specific
secondary structure shows that (i) the reduction of allowable point mutations allows
for adaptation to some large-scale topology, but strongly reduces the possibility of
small-scale adaptations, (i) the abolition of insertions and deletions has very little
effect on the results of the search process.

During the evolutionary search process for a secondary structure with a specific
topology and a high frequency of base-pairing the quasispecies moves into a
subspace in which the similarity between secondary structures of neighboring
sequences is relatively high. Increased similarity between second structures of
neighboring sequences is also found in the Rev responsive element (RRE) in the
lentiviruses Caprine arthritis-encephalitis virus and Visna virus, In these viruses a
biased nucleotide frequency in the RRE region suggests that selection for the RRE
RNA secondary structure affects the amino acid sequence of the env gene. Qur
results show a variation in the ruggedness of fitness landscapes which are based on a
high degree of epistatic interactions. Fitness landscapes play an essential role, not
only in biotic evolution, but also in all kinds of optimization processes (Hill
Climbing, Simulated Annealing, Genetic Algorithms, etc). Variation in their rugged-
ness should therefore be taken into account in the analysis of these processes.

Introduction

Species with a low quality of replication can only maintain a short genome (Eigen &
Schuster, 1979), that may be too small to store all the necessary information in a
sequential manner. To increase the amount of information that can be stored, the
quantity of information per length unit has to be increased; i.e. parts of the genome
have to code for multiple functions. Such multiple coding has indeed been observed
in viruses, which are notorious for their high mutation rate. A well-known example is
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the overlapping of protein-coding regions such as is found in the bacteriophage
©X174 (Barell et al.,, 1976}. Here the multiple coding occurs at one functional level,
ie. at the protein-coding level. It might, however, also occur at different functional
levels. In some lentiviruses like HIV, Caprine arthritis-encephalitis virus (CAEV) and
Visna virus, the Rev response element (RRE), which is an RNA secondary structure
involved in regulating the transport of unspliced mRNA to the cytoplasm, is located
within the coding region of the env gene (Saltaretli et af., 1990; for a review of HIV:
Cullen, 1991). A shortage of “genome space” is not the only reason why multiple
coding occurs; there may be a need for the spatial proximity of different “codes”™. In a
number of retroviruses, pseudoknots which are located in the overlap of reading-
frames facilitate frameshifts during translation (reviewed in Hatfield & Oroszlan,
1990). Another example of multiple coding can be found in the coding region of
histone genes where the balancing of G and C contents points 10 a constraint of the
secondary structure of the mRNA (Huynen et al, 1992). Moreover, multiple coding
may be favored by evolutionary dynamics. As is shown by Hogeweg & Hesper
{1992), parts of the genome that are relatively well conserved can serve as recognition
sites for the development of new functions.

In this paper we address the question, to what ¢xtent does multiple coding affect,
or even frustrate, the functionality of its constituents? We tackle this question by
analyzing in what way muitiple coding affects the evolutionary search process.
Evolution can be viewed as the migration of a quasispecies through a sequence-
space. The subspace that can be reached directly from the sequences within the
quasispecies is determined by the Genetic Operators, ie. the types of mutations
{point mutations, insertions, deletions, recombination, ¢tc) that can be used. Multiple
coding can influence the extent to which these Genetic Operators can be used. The
presence of coding for a protein within a piece of RNA/DNA will, if the protein
sequence has to be preserved, greatly reduce the number of ailowable point
mutations. Moreover, it will reduce possibilities for insertions or deletions since they
are likely to cause frameshifts.

The mapping from RNA primary sequence to RNA secondary structure is a nice
example of a non-linear genotype—phenotype relation in which the constituents of
the genotype (RNA nucleotides) have to be well co-adapted in order to create some
desired phenotype. The mapping is particularly intriguing since it is highly redun-
dant; in other words, multiple primary sequences give rise to the same secondary
structure (suboptimal foldings not inciuded). Therefore restrictions on the primary
sequence do not necessarily limit the secondary structures that can be attained. In
the past decade algorithms have been developed which give reasonable estimates of
the secondary structure of relatively short RNA molecules {<300). This makes it
possible to study the evolution of RNA secondary structure by simulation (Fontana
& Schuster, 1987). In the present paper we will focus on the restrictions that coding
for a protein imposes on the possibility of development of RNA secondary structure.
This does not mean that we believe that the development of multiple codes might not
be in a different order, or simultaneous. This approach will enable us to get some
idea about the evolutionary consequences of multiple coding. We first analyze the
amount of change that the various Genetic Operators cause in secondary structure.
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Second, we simulate an evolutionary process in which different “sets” of Genetic
Operators are used, and analyze their outcomes. Finally, we discuss to what extent
constraints at the protein level affect the selection of RNA secondary structure in
biotic (multicoding) RNA sequences.

Methods

RNA SECONDARY STRUCTURE

The Enfold algorithm (Hogeweg & Hesper, 1984) is used to analyze the effect of
different Genetic Operators and to simulate the evolution of RNA secondary
structure, The RNA secondary structure in CAEV and Visna virus is analyzed using
the Zuker-algorithm (Zuker, 1989) based on the Fontana-algorithm (Fontana et al.,
1993). Although the latter gives more accurate predictions of secondary structure, it
takes more CPU time and was therefore not used for the large-scale simulations, The
parameter set from Jaeger et al. (1989) was used in both algorithms. We cross-
checked our expectation that our results were not affected by the difference between
the algorithms by using both algorithms for the analysis of the strings produced by
the simulated evolution using the Enfold-algorithm.

To compare RNA secondary structures we represented the structures as strings, in
which every position has a symbol depending on its direction of base-pairing
(upstream or downstream from the hairpin loop), if a base is not base-paired the
symbol depends on whether it is in a hairpin loop or not (Konings & Hogeweg,
1989). Dissimilarity between the strings is given by their nominal distance from each
other, that is by the number of different symbols at corresponding positions. Where
alignment is included in the comparison of secondary structure, an algorithm is used
based on Needleman & Wunsch (1970), with a penalty of 1 per position per gap.

GENETIC OPERATORS

Point mutations are substitutions of nucleotides in the RNA string. Because there
is no checking for back mutations, in the long run the number of mutations will yield
a slight overestimate of the nominal distance between sequences. In our analysis of
the effect of mutations that do not change the amino acid code we took only the
redundancy of third positions into account.

Deletions and insertions take place by removing one nucleotide from the RNA
string, and putting one back. The sites are chosen randomly and independently. One
insertion and deletion thus creates a shift of one nucleotide over the distance between
the insertion and the deletion. When two sites are chosen randomly within a string,
the mean distance between the sites is about one-third of the length of the string, in a
string of length 150 nucleotides one insertion/deletion thus causes a mean shift of 50
nucleotides.

For cross-over one piece of the RNA string is substituted by another picce. The
amount of change in the primary sequence will then depend on the length of the
piece of RNA that is substituted and on its similarity to the new piece of RNA. To
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determine the maximum amount of change in secondary structure that is caused by
cross-over in random RNA strings, we let the new piece of RNA differ at every
position from the piece it has replaced. This way the amount of change in the
primary sequence after a cross-over of length L equals the amount of change in the
primary sequence after L point mutations, the only difference being that the change
caused by cross-over is localized, whereas the change caused by point mutations is
spread out over the entire string. By comparing the amount of change in secondary
structure after cross-over with that after point mutations we obtain an idea of the
“locality” of the transition from an RNA sequence to RNA secondary structure.
During the simulation of evolutionary processes the part that is crossed-over comes
from another individual in the population. In this case the nominal distance between
the primary sequence before and after the cross-over depends on the heterogeneity in
the population.

EVOLUTION

A Genetic Algorithm (Holland, 1975) was used to simulate the evolutionary
selection process. A population consists of 100 RNA strings (GNOMES) of 150
nucleotides. At each time-step 10 GNOMES are removed from the population. The
chance of being removed is proportional to the relative fitness of the GNOMES, i.e.
“non-survival of the non-fittest”. Thereafter reproduction takes place. From the
remaining population 10 GNOMES are randomly chosen and copied to create 10
new GNOMES. The Genetic Operators change the primary sequences of these new
GNOMES. After point mutations and/or insertions/deletions, (equal} cross-over
between the new GNOMES takes place and they are put into the population. The
secondary structure and fitness of the newly formed GNOMES are then determined.
In the initial population all GNOMES are identical, a setting which can prevent
premature convergence on local optima and which is biologically more relevant than
the traditional setting for Genetic Operators in which all initial strings are chosen
independently (Huynen & Hogeweg, 1989). Each simulation is run for 2500 time-
steps, 25 simulations are performed for ¢very set of the Genetic Operators.

SELECTION CRITERIA

The topology that is selected is a secondary structure with four stacks and three
hairpin loops (Fig. 1). The three hairpin stacks do not necessarily have to stem from
one “master” stack. The actual fitness is determined by multiplying the lengths of the
four different stacking regions. The lengths of the stacks are multiplied in order to
create selection towards stacks of equal length. Bulges and internal loops are not
included in the length of the stacks; therefore the selection criterion favors a high
level of base-pairing.

FREQUENCIES OF OCCURRENCE OF GENETIC OPERATORS

The frequency of occurrence of a Genetic Operator per newly formed string has a
Poisson distribution. The mean number of point mutations per new GNOME is |,
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FiG. 1. Secondary structures after evolution for a “four-stack/three-hairpin loop” structure. The
secondary structure shown is that of the run (one out of 25} which gave the median result with respect to
fitness. The representation of secondary structure is according to the “mountain range” representation
{Hogeweg & Hesper, 1984). Each base pair is shown by a horizontal line whose length spans the distance
of that representation. Hairpin loops appear as flat tops, interior loops and bulges as intermediate
plateauy, helices as sloping hillsides, and branching regions as valleys. Vertical lines within the pattern
show the point midway between the nucleotides paired by the horizontal line. As is shown, evolution with
different sets of Genetic Operators produced reasonable adaptation to the required RNA secondary
structure. (a) Evolved with point mutations, insertions/deletions and recombination. (b) Evolved with
point mutations and recombination. (c) Evolved with point mutations that do not change amino acid
coding and recombination.
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unless insertions and deletions are present; then it is 0-5. Also if the amino acid code
is not allowed to change, the mean number of mutations per new GNOME is 1. The
mean number of insertions/deletions per new GNOME is 0-25. The mean number of
recombination events per new GNOME is 1.

RNA SEQUENCES

Both for the analysis of the effect of Genetic Operators and for the simulation of
an evolutionary selection process, the nucleotides in all positions were chosen
randomly and independently in the initial sequences, giving equal probability to all
nucleotides. The env sequence of CAEV is from Saltarelli et al. (1990), the env
sequence of VisNa is from Sonigo et al. (1985).

Results

THE EFFECTS OF GENETIC OPERATORS ON RNA SECONDARY STRUCTURE

One way to analyze the effect of Genetic Operators on secondary structure is to
calculate the relation between the (dis)similarity of primary sequences and the
dissimilarity of secondary structures (Fontana et af., 1993). This relation is calculated
with regard to the changes caused by the various Genetic Operators in random
sequences. The Genetic Operators are: point mutations, point mutations that do not
affect the coding capacity of the string, insertions and deletions, and recombination
(Fig. 2). As is shown for all Genetic Operators, small changes in an RNA primary
sequence can give rise to large changes in RNA secondary structure.

Point mutations

Point mutations that do not affect the coding capacity change secondary structure
less than do the same number of point mutations in arbitrary positions (Fig. 2). This
is due to a restriction on the positions where mutations can occur (only one in every
three positions) and to the fact that if no amino acid changes are allowed, transitions
(A to G.or C to U) occur more often than transversions (A, G to C, U). The latter
have a more drastic effect on secondary structure. The restriction in the types of
mutations that can occur affects the mean dissimilarity after only one mutation. The
restriction on the positions where mutations can occur starts to lower the mean
dissimilarity after about 12 mutations (8%, of the sequence length). The limitation in
the mean dissimilarity between secondary structures is small compared to the
limitation in dissimilarity between primary sequences. That is, the mean dissimilarity
between two sequences that code for the same protein, is less than one-third of the
dissimilarity between two random sequences, whereas the dissimilarity between the
secondary structures of these protein-coding sequences is nearly nine-tenths of that
of random sequences. The latter ratio is the one between the levels of saturation of
the curves of the different types of mutations.
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Fic. 2. Relation between dissimilarity in primary sequence and mean dissimilarity in secondary
structure for different Genetic Operators. The functions for “insertions/deletions” (with or without
alignment) and “no amino-acid-changing mutations™ have fully saturated, the other functions finally reach
the same level as the “insertion/deletion without alignment” function, ie. the dissimilarity between
random sequences. Saturation of the point mutations and insertions/deletions function starts within 10%,
of the sequence-length, which is in accordance with the short correfation length of RNA secondary
structure (Fontana et al, 1993). The mean effect of cecombination or localized point mutations is much
less than that of mutations spread out over the entire sequence. This shows the presence of local
“domains” in RNA secondary structure. (—), No amino acid changing point mutations; (), point
mautations; (©}, insertions/deletions; { x ), recombination; {]), insertions/deletions with alignment.

Recombination

The comparison of the effects of point mutations and recombination shows clearly
that mutations that are “spread out” randomly over the string have a more drastic
effect than mutations localized in one region. This reflects the presence of local
“domains” in second structure, in other words if nucleotide P interacts with Q, and R
with 5, then if P is close to R, Q is probably close to S. Therefore changes in the
primary sequence within one region often only affect the interactions with one other

region, and are therefore less likely to change the secondary structure of the whole
sequence.

Insertions and deletions

The search space that can be reached with insertions and deletions is no larger
than the space that can be reached with point mutations alone. However, compared
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to point mutations, insertions and deletions clearly increase the connectivity of the
search space, because they create larger “jumps” through secondary structure space.
This is reflected in the high dissimilarity after one insertion/deletion, and in the
saturation of the “dissimilarity relation” after a relatively small number of steps
(Fig. 2). Alignment of the secondary structures drastically increases the similarity, but
does not change the shape of the relation between changes in sequence and
secondary structure (Fig. 2).

RN A landscapes resulting from different Genetic Operators

The frequency distribution of changes in secondary structure, a so-called RNA
landscape (Peter Schuster), has been calculated for insertions and deletions, point
mutations, and for point mutations that do not change the amino acid coding
(Fig. 3). The distribution of changes in secondary structure caused by muiations that
do not change the amino acid coding hardly differs from that caused by point
mutiations in all positions. Although restricting the point mutations to those that do
not change the amino acid code shifts the mean dissimilarity of secondary structures
to a lower value (Fig. 2), this does not afiect the maximum dissimilarity, i.e. it does
not affect the possibility to obtain a maximum difference between secondary
structures after a certain number of mutations.

Although the mean nominal distance between secondary structures after a small
number of insertions/deletions looks more or less like the mean nominal distance
after twice as many point mutations (Fig. 2), the distribution of the changes is
different. The “peak” of the distribution is shifted towards a higher dissimilarity. The
main effect of the alignment of the secondary structures is, besides a general increase
in similarity, a smali peak at dissimilarity 2 after one insertion/deletion. Here
alignment corrects the shift in secondary structure that is caused by a shift in the
primary sequences.

Robustness of RN A landscape properties

Fontana et al. (1993) have obtained results for point mutations in arbitrary
positions similar to those depicted in Figs 1 and 2. The algorithm they used for
secondary structure comparison algorithm differs from the one used here: RNA
secondary structures are rcpresented as trees, and dissimilarity is based on the

F16G. 3. Frequency distribution of the number of changes in secondary structure after point mutations or
insertions/deletions in the primary sequence. The frequency of a number of changes after a number of
mutations is given by the z direction, which represents the promillage of the total. A low, odd number of
changes in secondary structure is very unlikely. To smooth this effect, the odd and even numbers of
changes have been added pairwise, starting at 0. As is shown, secondary structure space is highly
connected, that is, maximum dissimilarity between secondary structures can be achicved after one point
mutation or one insertion/deletion. (a) Frequency distribution for point mutations, dissimilarity of
secondary structures is determined by direct comparison {no alignment). (b) Frequency distribution for
point mutations that do not change amino acid code, dissimilarity of secondary structures as in (a).
(c) Frequency distribution for insertions/deletions, dissimilarity of secondary structures as in {a).
{d) Frequency distribution for inseriions/deletions, dissimilarity of secondary structures determined using
alignment. Note that the “number of insertions/deletions™ axis has a length of only 20.
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number and kind of “tree editing” steps required to change one secondary structure
into another. Thus properties, like the shape of the curve that describes the mean
dissimilarity in secondary structure after a number of changes in primary sequence
and the shape of the frequency distribution of changes in secondary structure, do not
depend on the specific algorithms vsed to determine or compare secondary structure.
It would be interesting to find out whether the frequency distributions of changes in
phenotype in response to changes in genotypes, as shown above, are general
properties of “highly epistatic” genotype—phenotype mappings like the mapping
from RNA primary sequence to RNA secondary structure.

EVOLUTION OF SECONDARY STRUCTURE WITH DIFFERENT GENETIC OPERATORS

Simulations of evolutionary processes with different Genetic Operators were
performed for the development of a specific topology of the secondary structure. The
three “sets” of Genetic Operators that were used during the different runs are:
(i) insertions/deletions and point mutations, (ii) point mutations, and (iii) point
mutations that do not change the protein that is coded for. Cross-over was used in
all runs. The topology that was selected for was a four-stack, three-hairpin structure,
like the RRE in the lentiviruses CAEV and Visna virus. The final shapes of the best
individual in the population show that even in the most restricted evolution (only
allowing for point mutations that do not change the amino acid code and crossing
over) there is a reasonable capability of adapting to the required secondary structure
(Fig. ). The fitness of the RNA sequences depends not only on the presence of a
large-scale secondary structure but also on the frequencies of base-pairing. The final
fitnesses and frequencies of base-pairing show that allowing for point mutations with
insertions/deletions or point mutations without insertions/deletions during evolution
makes little difference. There is, however, a significant difference between these two

TABLE 1
Fitnesses and base-pairing frequencies after evolution for a “four-stack/three-hairpin”
RN A secondary structure, using different Genetic Operators, and in random sequences.
The means and the standard deviations of 25 runs are shown

Fitness Base-pairing

x S.D, X S.D.
Genetic Operators used during selection
Point mutations, insertions/deletions and
CrOss-Over 56 592 8305 850%, 1-7%
Point mutations and cross-over 53598 9076 83-1% 31%
No amino acid-changing point mutations,
and cross-over 34381 7216 73-9% 4-2%
Random sequences 2245 2996 48-8%, 8:9%,

The fitness is the product of the four stack lengths. The maximum fitness {the maximum total
stacklength is 70, thus the maximum fitness is 17.17.18.18 = 93 636) is never reached: this is probably
due to the low correlation of the fitness landscape. Evolution in which only the no amino acid-changing
point mutations are allowed gives rise to a lower percentage of base-pairing than evolution in which all
positions are free to change.
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on the one hand and the result of the most restricted evolution on the other hand
(Table 1). Although the latter is capable of adapting to a large-scale topology,
adaptation on a smaller scale, i.e. by removing bulges or internal loops from stacking
regions is less easy, as is reflected in the frequencies of base-pairing.

THE SHAPE OF THE SECONDARY STRUCTURE LANDSCAPE AROUND SELECTED SEQUENCES

Starting from the sequences that were selected using different sets of Genetic
QOperators for the “four-stack, three-hairpin loop” topology, we calculated the
relation between dissimilarity of primary sequence and secondary structure, as is
caused by point mutations (Fig. 4). The selected sequences are clearly more similar to
their “neighbors™ than random sequences are to their neighbors. This effect is the
least pronounced in products of the evolution in which the protein coding had to be
preserved. There is little difference between the results of the other, less restricted
evolutions with respect to their dissimilarity relation.
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Fic. 4. Relation between dissimilarity in primary sequence and mean dissimilarity in secondary
structure for point mutations. The initial sequences in the analysis have evolved for a specific topology
using different “sets” of Genetic Operators: point mutations, insertions/deletions and recombination,
point mutations and tecombination, no amino acid-changing point mutations and recombination. As is
shown, the evolved sequences show less change in secondary structure after point mutations than do
random sequences. (—), Random initial sequence; ((J), after evolution with no amino acid changing point
mutations; (), after evolution with insertions/deletions and point mutations; { x}, after evolution with
point mutations.
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F1G. 5. Cumulative distances in secondary structure for point mutations. Starting sequences are selected
for a “four-stack/three-hairpin loop” secondary structure, using different sets of Genetic Operators, The
lines show where the curves become “straight”, i.c. where the similarities between secondary structure of
“neighbering” primary sequences become constant. The sequences that have evolved with no amine acid-
changing point mutations require fewer point mutations before the dissimilarity in secondary structure of
“neighboting” sequences becomes constant than the sequences that have evolved without restrictions.
(O), After evolution with point mutations and insertions/deletions; (e), aflter evolution with point
mutations; (+), after evolution with no amino acid-changing point mutations.

THE IMSTANCE FROM SELECTED SEQUENCES TO RANDOM SEQUENCES

As is shown in Fig. 4, selection for a topology with a high degree of base-pairing
increases the similarity between secondary structure of the fittest individual in the
population and that of its nearest neighbors. If this is a general feature of the
(sequence) subspace around the fittest individual, this effect should aiso be visible in
the correlation between the neighbors of the fittest. By examining how many
mutations are needed before the similarity between neighbors in a random walk,
starting from the optimum, approaches the similarity of neighbors in a random walk,
starting from a random sequence, one can estimate how many mutations the
optimum is away from a “random” sequence (with respect to secondary structure).
The cumulative nearest-neighbor distances in a random walk, starting from
sequences evolved with the different Genetic Operators, are given in Fig. 5. The
difference between the most restricted and the least restricted (with point mutations
and insertion/deletion) evolution is significant. An RNA sequence that has evolved
without restrictions needs about twice as many mutations to come into a region
where the distances between secondary structure are constant as an RNA sequence
that has evolved with restrictions. In the least restricted case about 15% of the
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Fic. 6. Cumulative distances between secondary structure for point mutations. Starting sequences are
the Rev response elements in CAEV and Visna virus, (Q), RRE in CAEY; (+), RRE in Visna.

sequence has to be changed (about 22 mutations). The fact that it takes about 15% of
change in the primary sequence to go from a selected secondary struciure to a more
or less random sequence does not mean that it would take only 159 of change to go
from any random sequence to a secondary structure like the one that has been
selected. This 15%; is more like a lower bound. The number of changes between the
original sequence (from which the evolution started) and the final sequence after
evolution with only point mutations varies between 0-5 and (-66 times the length of
the sequence (data not shown). This gives an upper bound, since one expects some
neutral drift during evolutionary search.

THE DISTANCE FROM BIOTIC RNA SECONDARY STRUCTURES TO “RANDOM” SEQUENCES

The “cumulative distance plot” has also been calculated for some biotic functional
secondary structures (Fig. 6). The RRE secondary structure is formed by a primary
sequence that also codes for part of the env protein in lentiviruses. The length in
CAEYV is 193 and in Visna virus it is 176. The nucleotide sequence that codes for the
RRE in these lentiviruses is relatively well conserved within the env gene, with respect
to both silent and non-silent substitutions (Saltarelli et al,, 1990). The cumulative
distance plots of the RRE or CAEV and Visna virus both show that the distance
between secondary structures of neighboring sequences increases as one moves away
from the initial sequence, as has been shown for the molecules that have been
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F1G. 7. Redundancies of amino acid-coding of the env gene in CAEV and Visna virus (upper part of the
figure), and nucleotide frequencies in CAEV. The redundancies are expressed by the number of mutations
pet codon (out of nine possible mutations) that would not change the amino acid coding, The graph shows
the average redundancies and frequencies of a window of 64 codons in CAEV and 59 codons in Visna
virus, i.c. the size of the Rev response elements in CAEV and Visna. The env genes were aligned using
Needleman & Wunsch (1970). Note that the frequencies of adenine per position per codon and the
frequency of adenine per codon are not on the same scale. In the RRE region the adenine frequency is
relatively low, this is found for the first and third coding pasitions and to a lesser extent also for the second
coding positions. The low adenine frequency is mainly compensated by a relatively high C frequency. High
frequencies of A in first and second coding positions bring about a low redundancy for amino acid coding,
and low G + C frequencies reduce secondary structure base-pairing potential (Huyen et al,, 1992; Fontana
et al, 1993). Selection for the development of conservation of the secondary structure of the RRE is
therefore likely to have caused nucleotide frequencies which are biased relative to the rest of the sequence.
(O), A in all coding positions; (—), A in first coding positions; (—), A in second coding positions; (---), A in
third coding positions; (—), redundancy CAEYV; {-+), redundancy Visna.

selected for a specific secondary structure. The number of mutations required to
reach a constant similarity between neighboring secondary structures relative to the
sequence length is, for RRE in CAEYV, larger than the number for the artificial
multiple coding sequences reported here. This suggests that the nucleotide sequence
has been flexible in more than only the redundant third codon positions in order to
form the particular secondary structure. Comparing the curves quantitatively is
however not appropriate, since we know little about the selection parameters for the
biotic sequences.

It is interesting to note that the RRE in CAEYV and in Visna lies in the most
redundant area with respect to amino acid coding. That is, out of nine potential
mutations per codon in this area a mean of 2-4 will not change the protein coding;
for the rest of the eny gene this mean is 1-8 (Fig. 7). The relative high redundancy is
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related to a bias of nucleotide frequencies in the RRE relative to the rest of the env
gene (A 24%, C249%, G 28%, U 24% in RRE; A 38%, C 16%, G 25%, U 21% in the
rest of env). The high adenine frequency in the “not-RRE part” of the env gene might
be due to a mutation bias of the reverse transcriptase, as was found in HIV-1
(Preston et al., 1988; Vartanian et al., 1991). The biased nucleotide frequencies in the
RRE region (relative to the skewed nucleotide frequencies in the rest of the env gene)
might be caused by the necessity to have a high G+ C content and a balanced G/C
ratio in order to form stable secondary structures with a high degree of base-pairing.
A balancing of the G/C ratio that points to a constraint on RNA secondary structure
has also been observed in histone genes of warm-blooded vertebrates (Huynen et al,
1992). The bias of nucleotide frequencies, which is predominantly present in the first
and third coding positions (Fig. 7), suggests that the development or conservation of
the RRE secondary structure has affected the amino acid sequence of the env gene.

Another argument supporting the idea that the protein-coding sequence has been
affected by the need for the secondary structure of RRE is that the variation that
exists between sequences of CAEV and Visna virus is not neutral, and appears to be
“coadapted”. That is, primary sequences that are intermediate between the sequences
of RRE in and CAEV and in Visna, both with respect to silent or non-silent
substitutions and with respect to conservative or non-conservative amino acid
changes, do not give rise to a (minimal energy) secondary structure like RRE in
CAEY or Visna virus (data not shown).

Discussion

Restricting the mutations that are allowed during the ¢volution of RNA to those
that do not change the protein code still lets an arbitrary RNA molecule adapt its
secondary structure to some large-scale topology. This is reflected in the amount of
change that these “restricted” mutations cause in secondary structures of random
RNAs and in the results of evolutionary adaptation that uses these restricted
mutations. Adaptation on a smaller scale appears to be less easy, as is shown in the
frequency of base-pairing that can be achieved. If all positions in an RNA molecule
are allowed to change during evolution, the addition of the possibility for insertions
and deletions in the string does not significantly increase the amount of base-pairing
that can be achieved. In a way this is surprising, since allowing for insertions and
deletions appears to be an excellent way of removing bulges in stacking regions. For
the specific selection criteria used here, this removal connects local optima with the
global optimum. One way of removing such buiges using point mutations aione, is
by local shifts in the interactions. Such shifts have been deduced from biotic data in
sequences in which no insertions/deletions had occurred (Saltarelli et al, 1990;
Konings, 1992).

Our analysis shows that during evolution for a specific topology the characteristics
of the RNA landscape change. In selection for a structure with four stems and three
hairpins, the quasispecies moves to a subspace of the landscape in which the
correlation between the secondary structures of the neighbors is significantly higher
than in the space where evolution started. This increase can depend on two factors:
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(i) the specific topology: selection for a high level of base-pairing (as in this case)
creates relatively stable secondary structures in which mutations will only disrupt
local structures, creating small bulges in otherwise undisrupted stacking regions.
(ii) Evolution for the “flattest” peaks: evolution has a general tendency to move
quasispecies to peaks with a relatively high correlation, because they have relatively
large “basins” of attraction and/or because a high correlation increases the fitness of
the quasispecies. The latter effect has been observed in a “double-peaked” landscape
where the quasispecies ends up on the lower, reiatively flat peak, provided that the
mutation frequency is sufficiently high (Schuster, 1989). If this effect were to be
present in our simulations, it would of course imply a correlation between similarity
of secondary structure and similarity of fitness. Since the fitness is a function of the
secondary structure this correlation is highly likely. We cannot determine whether
evolution for the flattest peaks plays a role in the simulations reported here because
of the dominant effect of the specific topology that is selected for. Recent findings
show, however, that evolution for the flattest peaks does play a role in selection for
RNA secondary structure (Huynen & Hogeweg, in preparation).

The correlation between neighbors in a landscape can be regarded as a measure of
its “ruggedness”. As shown by Kauffman (1989), the ruggedness of a landscape
together with the guality of replication play a crucial role in whether a population
can reach an optimum, Thus, if the ruggedness of the landscape covered by the
quasispecies changes during evolution, then for optimum performance, parameters
concerning the mutation rate should also be allowed to change, not only for a
specific problem but also during the process of solving it. Suggestions have been
made about how to adapt the Genetic Operators during evolutionary search (for a
review see Davis, 1989) and the relation between the performance of a Genetic
Algorithm and the statistical features of the fitness landscape has been stressed
{Manderinck et al, 1991). The changes of the statistical features of the landscape
during the evolutionary search process and the implications of these changes have,
however, never been taken into account, and deserve our attention.
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