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Abstract- Coevolution has been used as optimization tech-
nigue both successfully and unsuccessfully. Successful op-
timization shows integration of information at the indi-
vidual level over many fitness evaluation events and over
many generations. Alternative outcomes of the evolu-
tionary process, e.g. red queen dynamics or speciation,
prevent such integration. Why coevolution leads to inte-
gration of information or to alternative evolutionary out-
comes is generally unclear.

We study coevolutionary optimization of the density
classification task in cellular automata in a spatially ex-
plicit, two-species model. We find optimization at the in-
dividual level, i.e. evolution of cellular automata that are
good density classifiers. However, when we globally mix
the populations, which prevents the formation of spatial
patterns, we find typical red queen dynamics in which cel-
lular automata classify all cases to a single density class
regardless their actual density. Thus, we get different out-
comes of the evolutionary process dependent on a small
change in the model. We compare the two processes lead-
ing to the different outcomes in terms of the diversity of
the two populations at the level of the genotype and at the
level of the phenotype.
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He found that coevolution of algorithms and problems re-
sulted in a much more efficient optimization process that
led to faster sorter algorithms than algorithms found in tra-
ditional evolutionary optimization processes. In addition to
the coevolutionary, antagonistic relation between algorithms
and problems Hillis embedded the evolutionary process in
a spatial setting; algorithms and problems were situated on
a 2-dimensional grid and interacted only locally. Similar,
spatially embedded coevolutionary optimization models were
studied by Husbands (1994) and Pagie & Hogeweg (1997). In
all cases an improvement of the optimization process was re-
ported.

In other non-spatial coevolutionary optimization models
often techniques are used to ensure diversity of both pop-
ulations and longevity of ‘good’ individuals (Paredis, 1995;
Rosin & Belew, 1997; Juid’& Pollack, 1998). The increased
longevity of solutions and the ensuring of diversity of both
species help to evolve general behavior, i.e. in the optimiza-
tion process (see also Paredis (1997)). The effects of such
techniques, however, are automatic side-effects of local dy-
namics such as occur in spatial evolutionary systems (Collins
& Jefferson, 1991; Husbands, 1994; Mahfoud, 1995; Pagie &
Hogeweg, 1997; Rosin & Belew, 1997).

We present results of a study of a spatially explicit coevo-
lutionary model in which two species have an antagonistic
interaction. We compare two cases. The first case depicts co-

In the context of evolutionary optimization techniques someevolution in a spatial environment in which individuals inter-
studies show that coevolution leads to an increase in the peact and compete locally with each other so that spatial pattern
formance or efficiency of the optimization process (Paredisformation occurs. The second case depicts coevolution in the
1995; Husbands, 1994; Rosin & Belew, 1997). In these modsame model except that the individuals of both populations
els coevolution is often compared to predator-prey or hostare globally mixed every time step. In this case spatial pattern
parasite interactions, i.e. a reciprocal antagonistic interactioformation does not occur. In the first model the evolutionary

(Bullock, 1995). The prey, or hosts, implement the poten-

process leads to individuals that have integrated adaptations

tial solutions to the optimization problem. The predators, orto separate selection events into a general solution. In the sec-
parasites, implement individual ‘fitness-cases’. Coevolutiorond model, in which the individuals are mixed, we see typical
does not always lead to general solutions of the optimizatiorcyclic red queen dynamics. Here, we present some results on
problem; red queen dynamics may hinder the optimizatiorthe evolution of diversity in the two models. Elsewhere we
process (Paredis, 1997), the coevolving species may speciatg!l present additional results and focus on the presence of

(Hillis, 1990), or settle into “mediocre stable states” (Ficici &
Pollack, 1998).
Hillis (1990) studied a coevolutionary optimization model

optimization, speciation, and red queen dynamics in evolu-

tionary processes (Pagie & Hogeweg, 2000).

in which sorter algorithms coevolved with sorter problems.2 The model
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We study the coevolutionary process in the context of the op-
timization of a computational task. Although the task is cho-



sen rather arbitrarily it lends itself easily for embedding injoining, i.e. the eight cells directly neighboring the middle
a two-species system with antagonistic interactions. The gesell plus the middle cell itself. The fithess of an IC is based
netic encoding of the task is characterized by a non-lineaonly on the CA in the same cell. This asymmetric fitness
genotype-phenotype mapping with strong epistatic interacevaluation procedure was found to improve the evolutionary
tions. We use a individual-based, discrete space, discrete timgptimization process Pagie & Hogeweg (1997). The fithess
model with synchronous updating. The general structure oévaluation scheme is characterized by a very sparse evalua-
the model is very similar to the structure of the models thation of the objective function, i.e. a general IC classification
were studied by Hillis (1990) and Pagie & Hogeweg (1997).algorithm. Sparse evaluation is in fact unavoidable because
The two species present in the model are called CAs and IC#he total number of ICs i8'4° and the total number of CAs
The CAs are 1-dimensional, binary state cellular automatas 2'28. Moreover, in (Pagie & Hogeweg, 1997) we showed
next-state rule-tables with a neighborhood size 3 (Wolframthat sparse fitness evaluation can help the evolutionary pro-
1984; Toffoli & Margolus, 1987), the ICs are initial condi- cess rather than hinder it (see also Hillis (1990)). We call the
tions of the cellular automata and are of length 149. Bothfithess of CAs and ICs that they receive during fitness evalu-
CAs and ICs are represented as bit strings. The interaction bationlocal fitnessi it is the fithess value which is used in the
tween a CA and an IC, and therewith the basis on which theiselection process. In order to compare CAs objectively we
fitness is calculated, is based on the density-classification taglalculate a general fithess measure (see below) which we call
of cellular automata (Mitchelét al., 1994). In the density performance fithesdMitchell et al, 1994).
classification task the CAs must classify ICs on the basis of After fithess evaluation in each cell of the grid a selection
the number of Os and 1s in the bit string of the IC. If the IC hasprocedure is performed between locally present CAs and be-
a majority of zeros in its bit string it belongs to class 0, other-tween locally present ICs, and growth of the selected CA and
wise itis class 1. The CA is allowed to iterate for maximally IC in the cell. Selection is based, probabilistically, on the rank
320 time steps, starting with the IC as initial condition. If the order of the nine individuals in the Moore neighborhood. The
CA settles into a homogeneous state of all zeros it classifiegrobability for an individual to be selected(s5”***, where
the IC as being of class 0. If the CA settles into a homogerank = 1..8. The last ranked individual (i.eank = 9) also
neous state of all ones it classifies the IC as being of class has a probability).5® for being selected. Note that we have
If the CA does not settle into a homogeneous state it answernstant population sizes. Although this is usual in evolu-
"don’t-know”, and does not receive a fitness reward. Only iftionary optimization models it is of course less realistic from
the CA classifies an IC correctly does it receive a fitness rea biological point of view.
ward of 1. In all other cases the IC receives a fitness reward After selection and growth we apply mutations to the CAs
of f (see below). and the ICs. We only use bit-flip mutations with rate 0.2 per
This particular task for cellular automata and its evolution-CA and rate 0.5 per IC. The use of the bit-flip operator in-
ary optimization is studied extensively by the EVCA-group introduces a strong mutational bias, in terms of the density of
the Santa Fe Institute (see Mitchetlal. (1996) for areview). bit strings, towards density values of 0.5. The presence of
Coevolutionary models using this task were previously studthis bias appears to have a large influence on the evolutionary
ied by Paredis (1997) and J&il& Pollack (1998). The latter dynamics in the context of the task that we study here (see
, however, used an intricate coevolutionary scheme incorpalso (Mitchellet al, 1994; Paredis, 1997)). For the initial
rating global feedback strategies to prevent the occurrence gbnditions this bias pushes them directly towards the pheno-
red queen dynamics (see also (Wedthl, 1999) for addi- type phase-transition in genotype space where it is easy to be
tional studies in that context). Here, we use the task of dendifficult.
sity classification primarily to study the process of coevolu- The two models that we study in this paper are as de-
tion between two antagonistic species. The (evolution of thejcribed above except that in the second model, i.emtixed
task itself is of little importance for this study although we mode] we globally mix the individuals of both populations
are interested in its properties as evolutionary ‘goal’. Belowevery time step. In the first model, i.e. thase modelkspatial

we will discuss some of these properties. patterns can form and influence the evolutionary process (e.g.
see Boerlijst & Hogeweg (1991); Savill & Hogeweg (1997)).
2.1 Spatial embedding and local dynamics Theperformance fithessf a cellular automaton is defined

as the number of correct classifications outl6f000 ran-

Ingi\QQUals of b?th spleciesc?ri distt;ibuted irl]l spgche wh.icg. IY4omly created initial conditions that have an unbiased density
a 2-dimensional regular grid of 30 by 30 cells with perio ' distribution (i.e. a binomial distribution around 0.5). We use

boundary conditions. Each cell contains one CA and one ICy .< fitness measure performance fitnessvhen we com-
giving population sizes of 900 individuals. The CAs and ICs '

. e are CAs of different populations. Initial conditions with a
are evaluated with respect to each other locally in this Spac‘gensity of approximately 0.5 are the most difficult to clas-
The fitness of a CA is based on the ICs in its Moore ad-,

sify because bit string that are almost equal (e.g. differ on

tThe bit string of the ICs have an odd length, so the majority is alwaysonIy one bit posmon) can belong to different denSIty class_es.
defined In fact, the performance of a good cellular automaton, like




for instance the GKL rule, decreases rapidly if it is evaluated3.1 Two typical simulations

on the basis of initial conditions whose density approachef:rom the point of view of optimization of density classifica-

0.5 (Mitchellet al,, 1994; Juilg & Pollack, 1998). A ‘good’ .. : : : :
. tion the mostimportant variable is the performance fithess. In
cellular automaton has a fithess value of about 0.8 (e.g. tf:g

GKL rule; 0.81), although cellular automata have been foun 9.2 we PIOt the evolutjon .Of the performance f“f‘e?fs of the
recently \;vith fit’ness values of up to 0.86 (Jeil& Pollack est CA in the population in the base model (solid line) and
1998) ' " in the mixed model (dashed line). The performance fitness
As .an evolutionary optimization task evolving good cellu- of the best individual in the mixed model fluctuates between

e 0.50 and 0.55. Even the best CAs in this model do not classify

lar automata appears to be difficult; in only a small number

. I random initial conditions much more accurately than random
of evolutionary runs are cellular automata found with fithess e
lassification into class 0 or class 1.

values in the same range as the fitness of the handwritten cel The performance fitness of the best CA in the base model

lular automata (Mitchelt al, 1996). initially increases and then fluctuates between 0.70 and 0.75.
These values for performance fitness of the CAs are in the
same range as the performance fitness values for the best cel-
f lular automata found in the evolutionary optimization mod-
els studied by Mitchelet al. (1994), Crutchfield & Mitchell
(1995), and Paredis (1997). Clearly, they are much more gen-
eral than the CAs from the mixed model. Following the con-
cepts of Crutchfield & Mitchell (1995), and Hordijkt al.
O'5|C densityl'o (1998), the CAs use particle-based strategies in order to com-
pute the density of ICs, as does, for instance, the rule GKL.

0.0

Figure 1: IC fitness functio®. The fitnesg an IC gets if it

is not correctly classified depends on its density. As result we Evolution of best performance fitness
get stabilizing selection toward minimal or maximal density 1
values, which are the ‘easy’ ICs. . 2 base model

V= &/ mixed mode|
0.8— —

Previous studies of coevolutionary optimization of this
task showed a rapid evolution of ICs towards the most dif-
ficult part of their genotype space, i.e. where they have a
density around 0.5. In order to circumvent this problem we
used a density dependent fithess function to calculate the fit-
ness of ICs (fig. 1). This fitness function implements sta- 02
bilizing selection towards minimum (i.e. 0.0) and maximum
(i.e. 1.0) density values. The actual values alo not mat- o ot b iatod toob e Lebo tabo 2000
ter, only the symmetry oft around density = 0.5 and the ime
fact thatf increases monotonically when it approaches the
minimum and maximum density values. In fact we simply Figure 2: Evolution of absolute fithess of the best individuals
used®(IC;) = |(density(IC;) — W’)L In Pagie & inthe population in the base model (solid line) and the model
Hogeweg (2000) we compare and discuss the evolutionanyith global mixing (dashed line). Whereas the CAs in the
dynamics in this model when we use the fitness function obase model show an increase in the fitness of the best individ-
fig. 1 and if we use a flat fithess function. ual the best CA in the globally mixed model remains around

0.55.
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3 Results In the base model we see that the CAs evolve a general-
In this section we will describe a simulation of the base model?€d classification algorithm whereas in the mixed model the
and a simulation of the mixed model. We found that the twoP€rformance fitness 0.5. However, the success of individ-
simulations are typical for the possible outcomes of the evolut@l CAS in the models depend on their local fitness values.
tionary process in the model. The precise parameter settind@ 119-3 we show time-plots of the base model (A) and of the
do not influence the general results to a great extent. The vaitixed model (B) again, but now we plot the average of the
ues that we used in the simulations that we describe here wel@c@! fitness values of the CAs and the ICs, and their average
actually chosen rather arbitrarily, e.g. we did not optimize ourd€nSity. All averages are normalized between 0.0 and 1.0, but
results in any particular way. The two simulations discussedn€ trué ranges are given in the legend.

below are run with the same parameter settings. Simulations Although there is a great difference between the perfor-

are started with randomly created CAs, i.e. CAs with a denMance fitness values of CAs of the two models their local
sity around 0.5; the ICs have an initial density of 0.0. fitness is approximately equal when we average over time
(= 0.9). The IC populations do better in the base model; they



have a time-averaged local fithess of 0.08 in the base modebughly the same; large fluctuations of the average fithess val-
whereas in the mixed model they have a time-averaged locales of the CAs and the ICs together with large fluctuations of
fitness of 0.04. The IC fitness value, however, also dependbe average densities of the CAs and the ICs. The simulations
on the density values of the ICs in the population. start with ICs that have a density of 0.0 which are very easy to

Thus, seen as a biological system the CAs do equally weltlassify correctly. Indeed, the average local fithess of the CA
in both models. Of course, in these models we do not tak@opulation quickly increases toward maximum values. As a
into account the population dynamics which may alter the reresult of mutations, ICs will arise with density values higher
sults in this particular respect. Thus, although from an opthan 0.0. But initially these ICs are still very easy to classify
timization point of view their is a clear difference in fitness correctly and the CAs maintain the high local fithess values.
values from a local point of view the CAs perform well in ~ The subsequent evolution of the IC population towards ICs
both cases. In (Pagie & Hogeweg, 2000) a similar equalitywith still higher densities increases the difficulty of the ICs.
of time-averaged local fitness values was found in the basklowever, even when the density of the ICs approaches 0.5
model and in the mixed model, using a different IC fitnessthe CAs in the population still classify them correctly and
function. maintain high local fitness values. This is because the CAs

When we look in more detail at the dynamics of fitnesssimply settle into a homogeneous state of zeros independent
and density in fig. 3 we can see that the initial transients aref the state of the IC. Up to this time this strategy of the CAs
in fact performs perfectly and this behavior is easily evolved
and easily maintained.

At t = 200 ICs arise that have a density larger than 0.5.
Now the CAs have a problem; settling into a homogeneous
state of zeros is no longer the correct behavior. Indeed, the
average local fitness of the CAs drops to very low values.
During this stage the IC population experiences strong selec-
tion pressure towards ICs with very large density values as
a result of the IC fitness functiof (fig.1). Soon after the
switch in the average density of the ICs, however, we see that
the average local fitness of the CA population rises again to
. very high values in both simulations. At this point the same
_ general behavior can be seen as at the beginning of the runs,
except that the density of the ICs is now larger than 0.5.

From this point, the dynamics of the two simulations di-

Evolutionary dynamics
basic model

normalized fitness/density

500 1000 15C°:ﬁ | 0{300 verge. The mixed model continues to show fluctuations in
tme | C dansty (0-129 the average density of the ICs and sharp drops in the aver-
A e ) age local fitness of the CAs for short periods of time. In the
' Evolutionary dynamics base model a different evolutionary phase unrolls. The fluc-
) global mixing tuations in the average IC density value become smaller, as
‘ Pﬂ ‘ V FW[ do the fluctuations in the average local fitness of the CA pop-
1 ulation. The CAs, however, no longer attain maximum local
08 i fitness although they did initially, and continue to do so in the
g | l mixed model.
% 0.6 N ‘\N\j i I . i
g | | AU, dj 4r 3.2 Dynamics of IC densities
: Il I . . e
E 0-45* ’ ‘/ . i In order to understand the different evolutionary dynamics in
g / j the base model and in the mixed model we look at the distri-

bution of ICs in the population. Here, we already see that in

0.2
y«q terms of their phenotype the IC population is homogeneous
: w UL in the mixed model but heterogeneous in the base model.
% 500 1000 1500 2000 Figure 4 shows the distribution of the densities of all ICs in
ime | Ch deney (0-128 the mixed model (A) and the base model (B) between t=2100
— |Cfitness (0-149) and t=2200 and the average local fithess of the CAs. In fig.
B. —— IC density (0-149)

4A the population of ICs switches back and forth between
high and low density values. At t=2100 the average local fit-
ness of the CAs is very low, and the ICs experience only a
strong selection toward lower density values due to the fit-
ness functior® (fig. 1). As soon as CAs arise that classify

Figure 3: Evolutionary dynamics of basic model (A) and the
model with global mixing (B). The simulations start with the
same parameter values and with the same initial state.



Evolution of IC density In the mixed model on average 454.1 unique genotypes are
0.7 ———— i Sl ‘ present§ =83.1), in the base model on average 369.3 unique
genotypes are present£ 14.1). For the CAs we find in the
mixed model an average of 3218 88.9), and in the base
model an average of 179.¢ & 17.0). Thus, in the mixed
model we find much more unique genotypes than in the base
model. However, this may largely result from the long peri-

ods of neutral selection in the mixed model.
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3.3 Evolution and maintenance of diversity
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Rather than looking at the number of unique genotypes we

. e can also look at how genotypes are distributed over the geno-

Ao 20 a0 260 20 2200 type space. In the lower panel in fig.5 we have plotted
Evolution of IC density the hamming distance of ICs in the base model within and

base model between the subpopulations of the different density-classes.
07 71 1 1 |t

= ] Whereas the hamming distance between ICs of different sub-

populations is expected to be relatively large, the hamming
distance of ICs of the same subpopulation of one generation
is also very large. In fact, the distance between ICs of differ-
ent subpopulations peaks near the distance which is expected
between two random ICs, i.e. 75 bits; within a subpopulation
the hamming distance distribution still peaks around 60.

0.6

o
~

normalized density

average local fitness CA's

Hamming distance distribution

Base model (lower panel), mixed model (upper panel)
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Figure 4: Evolution of IC density over 100 time steps in
mixed model (A), and base model (B). The densities of all
individuals are plotted as dots, the average local fithess val- ‘ 1
ues are plotted as thin lines. The population of ICs in the I ]
mixed model switches en masse from their density class, also 15000 | — Icovalc- -
characterized by short drops in average CA fitness. In the L2 e

base model two subpopulations of ICs exist.
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the ICs correctly, heré =~ 2110, the density distribution of /

the IC population starts to broaden considerably. When all 0

CAs classify all ICs correctly the ICs experience neutral se- hamming distance

lection rather than selection toward low density values. The

mutational bias brings about the drift of ICs toward densityFigure 5: Distributions of the hamming distance between ICs

values of 0.5. As soon as ICs arise with a density larger thaof base model (lower panel) and between ICs of mixed model

0.5 the IC population jumps from class 0 to class 1 en massg@ipper panel), at generation t=2000. Lower panel: hamming

and the same picture is seen again. distances are calculated between all ICs with a density lower
In fig.4B we see that in the base model the IC populatiorthan 0.5 (solid), all ICs with a density higher than 0.5 (dotted),

has speciated into two distinct subpopulations of ICs, withand between ICs of different subpopulations (dashed). Upper

densities around 0.4 and 0.6, which stably coexist. Thus, gianel: hamming distances are calculated between all ICs of

the phenotypic level the diversity of ICs is much larger in thethe population.

base model than in the mixed model. Nevertheless, the num-

ber of unique IC genotypes in the mixed model is actually In the top panel we have plotted the hamming distance of

larger than in the base model. For the simulations discusseall individuals in a population of ICs in the mixed model at

above we counted the number of unique genotype in 15 gent-= 2150. These ICs have a large range of density values and

erations between t=600 and t=2000, at every 100th time stejpave undergone a long period of neutral selection (fig.4A).




Nevertheless, the hamming distance of the ICs peaks at muare sometimes focussed in a small region in genotype space,
lower values than in the base model. sometimes they form clusters as well (see also below). This
results from the evolutionary dynamics that the CAs experi-

CA hamming-distance distribution ence in the mixed model; long periods of neutral selection

8 generations in the mixed model

15 i —— —— —— separated by evolutionary bottlenecks and short periods of
5 10 T T T ] strong selection.
8 1 1 1 J When we perform a cluster analysis on the genotypes of
3 5 — - - - CAs in the mixed and the base model we do not find clearcut
E’ 151\ N\L } M _/‘A/}\ 1 differences between the two models, although further anal-
e | 1 1 1 A ysis is needed. When we perform a cluster analysis on the
3 10~ n T T n phenotypesf CAs we find a clear difference between the two
8 s N 1 i B models. For this purpose the phenotype of a CA is defined as
RATALY 1 ‘ \/L\ - ‘ 4 the classifications it makes on a set of 500 initial conditions.

0 32 64 a2 64 a2 64 a2 64  Theinitial conditions of this set have density values that are

A hamming distance uniformly distributed between 0.4 and 0.6. The phenotype of
) ) o each CA is determined on the basis of the same set of initial

CA hamming-distance distribution conditions.
15 ‘ Bgen‘era"xons in the b?se model — In the base model the cluster analysis shows that often a

B small number of distinct clusters exist, optimal numbers be-
N A ing mostly between four and nine. A cluster analysis on the
- - phenotypes of CAs in the mixed model shows that indeed
w\_/\\ only one large cluster exists: all CAs behave equally “single-
J mindedly” in their classification behavior.

1 J\A/\% 3.4 Spatial pattern formation

0 32 64 32 64 32 64 32 64

A
B hamming distance
Figure 6: Hamming distance distributions in base model (A)
and in mixed model (B). For each model the distribution

of eight generations are plotted from t=1300 (lower left) tog
t=2000 (upper right) for every 100 time steps. CAs in the bas¢
model are always widely distributed with many CAs having
hamming distances around 40 bits. In the mixed model th
distribution varies per generation but peaks generally at lowe
values and sometimes at extremely low values.
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Figure 7: A: Snapshots of spatial distribution of the IC pop-

Note that in the base model some ICs within subpopulatlation at 5 consecutive time steps in the base model. ICs of
tions have small hamming distances. In the mixed model aldensity class 0 are depicted in black, ICs of density class 1 are
most all ICs are at least 20 bits apart from all other ICs. Thisdepicted in grey. B: Space-time plot of IC population over
suggests that in the mixed model all ICs are distributed over &80 time steps, time going from left to right. ICs of differ-
large area in the genotype space. In the base model, howev&ht density classes are distributed in complex wave patterns
the ICs are distributed in a few distinct clusters. which overtake each other continuously.

In Fig. 6 we show hamming distance distributions of the , L .
CAs in the mixed model (6A) and in the base model (6B). The question that arises is how the phenotypic diversity of
For each model we plotted the hamming distance distribulhe CAs and the ICs and the distinctiveness of the species into

tion of 8 generations, between t=1300 and t=2000, every 10¥/nich they cluster is maintained in the base model. Figure 7A
time steps. In the base model we see that the distribution afOWS five snapshots of consecutive time steps of the spatial

ways has a large peak for large hamming distances as wdiistribution of the ICs of different density classes. The ICs
as appreciable numbers of small hamming distances. In tH&f class 0 are colored black and the ICs of class 1 are grey.

mixed model the distribution tends to center around one of N€ ICS are distributed in many small patches rather than in

two peaks, the median of which varies considerably. Again®nly @ few large patches. In fig.7B we show a space-time plot

in the base model CAs are distributed in a number of dis©f the ICs over a period of 180 time steps in which we plot

tinct clusters. In the mixed mode. on the other hand. the CA& Vertical cross-section of the grid at consecutive time steps.
’ ’ The space-time plot shows that complex wave patterns are



present; patches of black ICs grow into patches of grey ICsponent population. This opponent population is also hetero-
and vice versa. As a consequence, at any one point in spageneously distributed in space. Thus, competition between
ICs of the two density classes alternate frequently. This alspecies within one population occurs, in parallel, in differ-
ternation of the two density classes is not primarily a resulent contexts. Because species are distributed in a number of
of mutation, which causes the global oscillations of the averpatches they will generally ‘see’, i.e. compete with, all other
age IC density in the mixed model, but it is a result of spa-species simultaneously, as in the mixed model or other mod-
tial dynamics. In the base model, ICs ‘chase’ CAs not onlyels with global interaction structures.

in genotypes-space, as in the mixed model, in addition they However, the main difference between the base model and
‘chase’ them in space-space. the mixed model is that in the base model at the individual
level the interactions are localized in space and time; dur-
ing some time individuals interact only with individuals of
one type, or of very few types. Also the short-term effect of
the coevolutionary process remains local in space; individ-
uals can have prolonged interactions with a small number of
other individuals, thus giving the opportunity of local special-
ization. Despite (or thanks to; Pagie (1999)) the lack of local
diversity we see evolution of general behavior, i.e. behavior
that is successful under many different circumstances.

4 Conclusion

We have studied a coevolutionary model of two antagonisti-
cally interacting species. We compared the evolutionary dy-
namics that occur if individuals remain localized in space,
i.e. when spatial pattern generation occurs, and the evolu-
tionary dynamics that occur if individuals are globally mixed
every time step. In the first case we find that individu-
als evolve a generalized response to environmental circum-
stances, whereas in the second case the systems exhibit evo-

. e . lutionary oscillatory dynamics. In that case we see the evo-
Figure 8: Snapshots of the spatial distribution of the CAs 'nl,ution of much simpler behavior, which is optimized with re-

the base model. The color coding is based on cluster analysé?)ect to one of the possible states of the other species. This

of the CAs. In A) and B) the cIuste_r analysis is based Onstrategy makes them easily exploitable, however. As a result
the phenotype of the CAs (see text), in C) and D) the CI“Ste\We see red queen dynamics where both coevolving species
analysis is based on the genotype of the CAs. A) and C) arfcillate between two states

snapshots at t=400, B) and D) are snapshots at t=900. CAs We found that the diversity of the populations of CAs and

that belong to a single cluster are distributed in small patchefg giffers greatly in the two models, albeit differently at dif-
in several locations in space. ferent levels. The mixed model shows higher numbers of
. . . . unique genotypes in the population, whereas the diversity on
\éVeI stu_dled thel spatldgl dy“ﬂm;]cs r?f the hCAS In Ithe ?aﬁ‘?he level of phenotypes is almost completely absent. Also, the
model using a color coding which ShOWS the results of t ediversity that we find in the base model, both at the level of
cluster analysis discussed above (fig. 8). The CAs are Clusthe genotypes as at the level of the phenotypes, is structured,

tered according to their phenotype (8A and 8B) or their 9€N0; & it occurs in distinct clusters, or species. This variety in the

type (8C and 8D), each at two time steps. Similar to the SP3hase model, however, is distributed over time and space. At

tial dls_trlbutlon ofthe ICs, _also In this case the CAS beI(_)ngmgthe level of the individuals the interactions and selection pres-
to a single cluster occur in patches, and sometimes in MOTg \ras may be of a single type for extended periods of time.
thag.one. h | d ab he followi . Locally, individuals experience sparse fitness evaluation, i.e.

sven the results prgsente above t € following pICturethey ‘see’ only a few fitness cases which are often of a single
arises of the eco-evolqhonary process as It occurs in the_ b,aWpe, but overall we see the evolution of general behavior, i.e.
model. A.t the population level the CAS_ and ICs are split Ninformation is integrated at the individual level (Pagie, 1999).
several (_jls_tmc_t clusters, or Species, Wh.'Ch come aboutby l0- 50 gty dies of coevolutionary optimization models that
cal specialization. A species is presentin one or more patchgg. e techniques to maintain high diversity in populations

in the field. At the bpundaries of the patches spe_cies €OM3is0 show evolution of general behavior (e.g. Paredis (1995);
pete with other species, but the number of players in a singlg, i & Belew (1997); Jui” & Pollack (1998)). In these

competitive interaction |_s_small, typlt_:ally two or three. Fur- models individuals still interact at a global level, i.e. every
thermore, each competition occurs in the context of the op-




individual ‘sees’ all other individuals and diversity is not nec- rules. In: Koza, J. R.; Banzhaf, W.; Chellapilla, K.; Deb,
essarily preserved in terms of distinct species. In our model K.; Dorigo, M.; Fogel, D. B.; Garzon, M. H.; Goldberg,
speciation is the result of tHecal eco-evolutionary dynam- D. E.; Iba, H. & Riolo, R. (eds.)Genetic Programming
ics and diversity is therefor ‘cheap’. It is an open question 1998: Proceedings of the Third Annual Conferender-

to what extend the evolution of diversity and speciation de- gan Kaufmann, University of Wisconsin, Madison, Wis-
pends on parameters of the evolutionary process, and how it consin, USA, pp. 519-527, pp. 519-527.

influences the evolution of general behavior. It will be inter-

esting to compare the evolution of diversity, speciation ancJVIAHFOUD’ S W. (1995); A comparison of parallel and se-

general behavior under different parameter settings and also quen_tlal niching methods. In: Eshelman, L. J. (e8ip- .
to models that use other techniques. ceedings of the 6th International Conference on Genetic

Algorithms Morgan Kaufmann Publishers, San Francisco,
pp. 136-143, pp. 136-143.

MITCHELL, M.; CRUTCHFIELD, J. P. & Das, R. (1996);
BOERLIJST, M. C. & HOGEWEG P. (1991); Selfstructuring Evolving cellular automata with genetic algorithms: A re-
and selection: spiral waves as a substrate for evolution. In: view of recent work. In:Proceedings of the First Inter-
Langton, C. G. (ed.)Artificial Life. Addison-Wesley, Red- national Conference on Evolutionary Computation and its
wood City, CA, vol. 2, pp. 255-276, pp. 255-276. Applications (EVCA’'96)
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