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Abstract- Coevolution has been used as optimization tech-
nique both successfully and unsuccessfully. Successful op-
timization shows integration of information at the indi-
vidual level over many fitness evaluation events and over
many generations. Alternative outcomes of the evolu-
tionary process, e.g. red queen dynamics or speciation,
prevent such integration. Why coevolution leads to inte-
gration of information or to alternative evolutionary out-
comes is generally unclear.

We study coevolutionary optimization of the density
classification task in cellular automata in a spatially ex-
plicit, two-species model. We find optimization at the in-
dividual level, i.e. evolution of cellular automata that are
good density classifiers. However, when we globally mix
the populations, which prevents the formation of spatial
patterns, we find typical red queen dynamics in which cel-
lular automata classify all cases to a single density class
regardless their actual density. Thus, we get different out-
comes of the evolutionary process dependent on a small
change in the model. We compare the two processes lead-
ing to the different outcomes in terms of the diversity of
the two populations at the level of the genotype and at the
level of the phenotype.

1 Introduction

In the context of evolutionary optimization techniques some
studies show that coevolution leads to an increase in the per-
formance or efficiency of the optimization process (Paredis,
1995; Husbands, 1994; Rosin & Belew, 1997). In these mod-
els coevolution is often compared to predator-prey or host-
parasite interactions, i.e. a reciprocal antagonistic interaction
(Bullock, 1995). The prey, or hosts, implement the poten-
tial solutions to the optimization problem. The predators, or
parasites, implement individual ‘fitness-cases’. Coevolution
does not always lead to general solutions of the optimization
problem; red queen dynamics may hinder the optimization
process (Paredis, 1997), the coevolving species may speciate
(Hillis, 1990), or settle into “mediocre stable states” (Ficici &
Pollack, 1998).

Hillis (1990) studied a coevolutionary optimization model
in which sorter algorithms coevolved with sorter problems.
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He found that coevolution of algorithms and problems re-
sulted in a much more efficient optimization process that
led to faster sorter algorithms than algorithms found in tra-
ditional evolutionary optimization processes. In addition to
the coevolutionary, antagonistic relation between algorithms
and problems Hillis embedded the evolutionary process in
a spatial setting; algorithms and problems were situated on
a 2-dimensional grid and interacted only locally. Similar,
spatially embedded coevolutionary optimization models were
studied by Husbands (1994) and Pagie & Hogeweg (1997). In
all cases an improvement of the optimization process was re-
ported.

In other non-spatial coevolutionary optimization models
often techniques are used to ensure diversity of both pop-
ulations and longevity of ‘good’ individuals (Paredis, 1995;
Rosin & Belew, 1997; Juill´e & Pollack, 1998). The increased
longevity of solutions and the ensuring of diversity of both
species help to evolve general behavior, i.e. in the optimiza-
tion process (see also Paredis (1997)). The effects of such
techniques, however, are automatic side-effects of local dy-
namics such as occur in spatial evolutionary systems (Collins
& Jefferson, 1991; Husbands, 1994; Mahfoud, 1995; Pagie &
Hogeweg, 1997; Rosin & Belew, 1997).

We present results of a study of a spatially explicit coevo-
lutionary model in which two species have an antagonistic
interaction. We compare two cases. The first case depicts co-
evolution in a spatial environment in which individuals inter-
act and compete locally with each other so that spatial pattern
formation occurs. The second case depicts coevolution in the
same model except that the individuals of both populations
are globally mixed every time step. In this case spatial pattern
formation does not occur. In the first model the evolutionary
process leads to individuals that have integrated adaptations
to separate selection events into a general solution. In the sec-
ond model, in which the individuals are mixed, we see typical
cyclic red queen dynamics. Here, we present some results on
the evolution of diversity in the two models. Elsewhere we
will present additional results and focus on the presence of
optimization, speciation, and red queen dynamics in evolu-
tionary processes (Pagie & Hogeweg, 2000).

2 The model

We study the coevolutionary process in the context of the op-
timization of a computational task. Although the task is cho-



sen rather arbitrarily it lends itself easily for embedding in
a two-species system with antagonistic interactions. The ge-
netic encoding of the task is characterized by a non-linear
genotype-phenotype mapping with strong epistatic interac-
tions. We use a individual-based, discrete space, discrete time
model with synchronous updating. The general structure of
the model is very similar to the structure of the models that
were studied by Hillis (1990) and Pagie & Hogeweg (1997).
The two species present in the model are called CAs and ICs.

The CAs are 1-dimensional, binary state cellular automata
next-state rule-tables with a neighborhood size 3 (Wolfram,
1984; Toffoli & Margolus, 1987), the ICs are initial condi-
tions of the cellular automata and are of length 149. Both
CAs and ICs are represented as bit strings. The interaction be-
tween a CA and an IC, and therewith the basis on which their
fitness is calculated, is based on the density-classification task
of cellular automata (Mitchellet al., 1994). In the density
classification task the CAs must classify ICs on the basis of
the number of 0s and 1s in the bit string of the IC. If the IC has
a majority of zeros in its bit string it belongs to class 0, other-
wise it is class 1y. The CA is allowed to iterate for maximally
320 time steps, starting with the IC as initial condition. If the
CA settles into a homogeneous state of all zeros it classifies
the IC as being of class 0. If the CA settles into a homoge-
neous state of all ones it classifies the IC as being of class 1.
If the CA does not settle into a homogeneous state it answers
”don’t-know”, and does not receive a fitness reward. Only if
the CA classifies an IC correctly does it receive a fitness re-
ward of 1. In all other cases the IC receives a fitness reward
of f (see below).

This particular task for cellular automata and its evolution-
ary optimization is studied extensively by the EvCA-group in
the Santa Fe Institute (see Mitchellet al.(1996) for a review).
Coevolutionary models using this task were previously stud-
ied by Paredis (1997) and Juill´e & Pollack (1998). The latter
, however, used an intricate coevolutionary scheme incorpo-
rating global feedback strategies to prevent the occurrence of
red queen dynamics (see also (Werfelet al., 1999) for addi-
tional studies in that context). Here, we use the task of den-
sity classification primarily to study the process of coevolu-
tion between two antagonistic species. The (evolution of the)
task itself is of little importance for this study although we
are interested in its properties as evolutionary ‘goal’. Below
we will discuss some of these properties.

2.1 Spatial embedding and local dynamics

Individuals of both species are distributed in space which is
a 2-dimensional regular grid of 30 by 30 cells with periodic
boundary conditions. Each cell contains one CA and one IC,
giving population sizes of 900 individuals. The CAs and ICs
are evaluated with respect to each other locally in this space.
The fitness of a CA is based on the ICs in its Moore ad-

yThe bit string of the ICs have an odd length, so the majority is always
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joining, i.e. the eight cells directly neighboring the middle
cell plus the middle cell itself. The fitness of an IC is based
only on the CA in the same cell. This asymmetric fitness
evaluation procedure was found to improve the evolutionary
optimization process Pagie & Hogeweg (1997). The fitness
evaluation scheme is characterized by a very sparse evalua-
tion of the objective function, i.e. a general IC classification
algorithm. Sparse evaluation is in fact unavoidable because
the total number of ICs is2149 and the total number of CAs
is 2128. Moreover, in (Pagie & Hogeweg, 1997) we showed
that sparse fitness evaluation can help the evolutionary pro-
cess rather than hinder it (see also Hillis (1990)). We call the
fitness of CAs and ICs that they receive during fitness evalu-
ation local fitness: it is the fitness value which is used in the
selection process. In order to compare CAs objectively we
calculate a general fitness measure (see below) which we call
performance fitness(Mitchell et al., 1994).

After fitness evaluation in each cell of the grid a selection
procedure is performed between locally present CAs and be-
tween locally present ICs, and growth of the selected CA and
IC in the cell. Selection is based, probabilistically, on the rank
order of the nine individuals in the Moore neighborhood. The
probability for an individual to be selected is0:5rank, where
rank = 1::8. The last ranked individual (i.e.rank = 9) also
has a probability0:58 for being selected. Note that we have
constant population sizes. Although this is usual in evolu-
tionary optimization models it is of course less realistic from
a biological point of view.

After selection and growth we apply mutations to the CAs
and the ICs. We only use bit-flip mutations with rate 0.2 per
CA and rate 0.5 per IC. The use of the bit-flip operator in-
troduces a strong mutational bias, in terms of the density of
bit strings, towards density values of 0.5. The presence of
this bias appears to have a large influence on the evolutionary
dynamics in the context of the task that we study here (see
also (Mitchell et al., 1994; Paredis, 1997)). For the initial
conditions this bias pushes them directly towards the pheno-
type phase-transition in genotype space where it is easy to be
difficult.

The two models that we study in this paper are as de-
scribed above except that in the second model, i.e. themixed
model, we globally mix the individuals of both populations
every time step. In the first model, i.e. thebase model, spatial
patterns can form and influence the evolutionary process (e.g.
see Boerlijst & Hogeweg (1991); Savill & Hogeweg (1997)).

Theperformance fitnessof a cellular automaton is defined
as the number of correct classifications out of10; 000 ran-
domly created initial conditions that have an unbiased density
distribution (i.e. a binomial distribution around 0.5). We use
this fitness measure, orperformance fitness, when we com-
pare CAs of different populations. Initial conditions with a
density of approximately 0.5 are the most difficult to clas-
sify because bit string that are almost equal (e.g. differ on
only one bit position) can belong to different density classes.
In fact, the performance of a good cellular automaton, like



for instance the GKL rule, decreases rapidly if it is evaluated
on the basis of initial conditions whose density approaches
0.5 (Mitchellet al., 1994; Juillé & Pollack, 1998). A ‘good’
cellular automaton has a fitness value of about 0.8 (e.g. the
GKL rule; 0.81), although cellular automata have been found
recently with fitness values of up to 0.86 (Juill´e & Pollack,
1998).

As an evolutionary optimization task evolving good cellu-
lar automata appears to be difficult; in only a small number
of evolutionary runs are cellular automata found with fitness
values in the same range as the fitness of the handwritten cel-
lular automata (Mitchellet al., 1996).
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Figure 1: IC fitness function�. The fitnessf an IC gets if it
is not correctly classified depends on its density. As result we
get stabilizing selection toward minimal or maximal density
values, which are the ‘easy’ ICs.

Previous studies of coevolutionary optimization of this
task showed a rapid evolution of ICs towards the most dif-
ficult part of their genotype space, i.e. where they have a
density around 0.5. In order to circumvent this problem we
used a density dependent fitness function to calculate the fit-
ness of ICs (fig. 1). This fitness function implements sta-
bilizing selection towards minimum (i.e. 0.0) and maximum
(i.e. 1.0) density values. The actual values off do not mat-
ter, only the symmetry of� around density = 0.5 and the
fact that f increases monotonically when it approaches the
minimum and maximum density values. In fact we simply
used�(ICi) = j(density(ICi) �

max density
2

)j. In Pagie &
Hogeweg (2000) we compare and discuss the evolutionary
dynamics in this model when we use the fitness function of
fig. 1 and if we use a flat fitness function.

3 Results

In this section we will describe a simulation of the base model
and a simulation of the mixed model. We found that the two
simulations are typical for the possible outcomes of the evolu-
tionary process in the model. The precise parameter settings
do not influence the general results to a great extent. The val-
ues that we used in the simulations that we describe here were
actually chosen rather arbitrarily, e.g. we did not optimize our
results in any particular way. The two simulations discussed
below are run with the same parameter settings. Simulations
are started with randomly created CAs, i.e. CAs with a den-
sity around 0.5; the ICs have an initial density of 0.0.

3.1 Two typical simulations

From the point of view of optimization of density classifica-
tion the most important variable is the performance fitness. In
fig.2 we plot the evolution of the performance fitness of the
best CA in the population in the base model (solid line) and
in the mixed model (dashed line). The performance fitness
of the best individual in the mixed model fluctuates between
0.50 and 0.55. Even the best CAs in this model do not classify
random initial conditions much more accurately than random
classification into class 0 or class 1.

The performance fitness of the best CA in the base model
initially increases and then fluctuates between 0.70 and 0.75.
These values for performance fitness of the CAs are in the
same range as the performance fitness values for the best cel-
lular automata found in the evolutionary optimization mod-
els studied by Mitchellet al. (1994), Crutchfield & Mitchell
(1995), and Paredis (1997). Clearly, they are much more gen-
eral than the CAs from the mixed model. Following the con-
cepts of Crutchfield & Mitchell (1995), and Hordijket al.
(1998), the CAs use particle-based strategies in order to com-
pute the density of ICs, as does, for instance, the rule GKL.
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Figure 2: Evolution of absolute fitness of the best individuals
in the population in the base model (solid line) and the model
with global mixing (dashed line). Whereas the CAs in the
base model show an increase in the fitness of the best individ-
ual the best CA in the globally mixed model remains around
0.55.

In the base model we see that the CAs evolve a general-
ized classification algorithm whereas in the mixed model the
performance fitness� 0.5. However, the success of individ-
ual CAs in the models depend on their local fitness values.
In fig.3 we show time-plots of the base model (A) and of the
mixed model (B) again, but now we plot the average of the
local fitness values of the CAs and the ICs, and their average
density. All averages are normalized between 0.0 and 1.0, but
the true ranges are given in the legend.

Although there is a great difference between the perfor-
mance fitness values of CAs of the two models their local
fitness is approximately equal when we average over time
(� 0:9). The IC populations do better in the base model; they



have a time-averaged local fitness of 0.08 in the base model
whereas in the mixed model they have a time-averaged local
fitness of 0.04. The IC fitness value, however, also depends
on the density values of the ICs in the population.

Thus, seen as a biological system the CAs do equally well
in both models. Of course, in these models we do not take
into account the population dynamics which may alter the re-
sults in this particular respect. Thus, although from an op-
timization point of view their is a clear difference in fitness
values from a local point of view the CAs perform well in
both cases. In (Pagie & Hogeweg, 2000) a similar equality
of time-averaged local fitness values was found in the base
model and in the mixed model, using a different IC fitness
function.

When we look in more detail at the dynamics of fitness
and density in fig. 3 we can see that the initial transients are
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Figure 3: Evolutionary dynamics of basic model (A) and the
model with global mixing (B). The simulations start with the
same parameter values and with the same initial state.

roughly the same; large fluctuations of the average fitness val-
ues of the CAs and the ICs together with large fluctuations of
the average densities of the CAs and the ICs. The simulations
start with ICs that have a density of 0.0 which are very easy to
classify correctly. Indeed, the average local fitness of the CA
population quickly increases toward maximum values. As a
result of mutations, ICs will arise with density values higher
than 0.0. But initially these ICs are still very easy to classify
correctly and the CAs maintain the high local fitness values.

The subsequent evolution of the IC population towards ICs
with still higher densities increases the difficulty of the ICs.
However, even when the density of the ICs approaches 0.5
the CAs in the population still classify them correctly and
maintain high local fitness values. This is because the CAs
simply settle into a homogeneous state of zeros independent
of the state of the IC. Up to this time this strategy of the CAs
in fact performs perfectly and this behavior is easily evolved
and easily maintained.

At t � 200 ICs arise that have a density larger than 0.5.
Now the CAs have a problem; settling into a homogeneous
state of zeros is no longer the correct behavior. Indeed, the
average local fitness of the CAs drops to very low values.
During this stage the IC population experiences strong selec-
tion pressure towards ICs with very large density values as
a result of the IC fitness function� (fig.1). Soon after the
switch in the average density of the ICs, however, we see that
the average local fitness of the CA population rises again to
very high values in both simulations. At this point the same
general behavior can be seen as at the beginning of the runs,
except that the density of the ICs is now larger than 0.5.

From this point, the dynamics of the two simulations di-
verge. The mixed model continues to show fluctuations in
the average density of the ICs and sharp drops in the aver-
age local fitness of the CAs for short periods of time. In the
base model a different evolutionary phase unrolls. The fluc-
tuations in the average IC density value become smaller, as
do the fluctuations in the average local fitness of the CA pop-
ulation. The CAs, however, no longer attain maximum local
fitness although they did initially, and continue to do so in the
mixed model.

3.2 Dynamics of IC densities

In order to understand the different evolutionary dynamics in
the base model and in the mixed model we look at the distri-
bution of ICs in the population. Here, we already see that in
terms of their phenotype the IC population is homogeneous
in the mixed model but heterogeneous in the base model.

Figure 4 shows the distribution of the densities of all ICs in
the mixed model (A) and the base model (B) between t=2100
and t=2200 and the average local fitness of the CAs. In fig.
4A the population of ICs switches back and forth between
high and low density values. At t=2100 the average local fit-
ness of the CAs is very low, and the ICs experience only a
strong selection toward lower density values due to the fit-
ness function� (fig. 1). As soon as CAs arise that classify



A

.

..

..

.

...

..

..

..

..

.

.

..

..

..

..

..

..

..

.

..

..

..

.

.

..

..

..

.

.

.

.

..

..

..

.
.

..

..

.

...

..

..

.

..

.
.

..

..

..

..

.
.

..

..

..

..

..
.

..

..

..

..

..

.

.

.

..

..

..

..

..

.

.

..

..

..

..

..

.

.

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

.

..

.

.

.

..

..

..

..

..

..

..

.

..

.

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

.

..

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

.

.

..

.

..

..

..

..
.

.

..

.

..

..
.

.

.

..

..

..

..
.

..

..

..
.

..

..

.

..

..

..

..

..

.

.

.

..

..

..

..

.

.

.

.

..

..

..

..

.

.

.

.

.

..

..

..

..

.

.

.

..

..

..

..

..

.

.

.

..

..

..

..

..

..

.

.

..

..

..

..

..

..

.

.

..

.

..

..

..

..

..

.

.

.

.

..

.

..

..

..

..

..

.

.

.

..

..

.

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

..

..

.

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

.

.

.

..

..

..

..

.

..

..

..

.

..

.

..

.

..

.

.

..

..

.

..

..

.

.

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

.

.

.

..

..

..

.

..

..

..

.

.

.

..

..

..

..

.

..

..

..

.

.

.

.

..

..

..

..

..

.

..

..

.

.

..

.

..

..

.

..

..

..

..

.

.

..

..

..

.

.

..

..

..

..

.

.

.

..

..

..

..

.

.

..

..

..

..

..

.

.

..

..

..

..

.

.

.

.

..

..

..

..

..

.

.

.

..

..

..

..

..

..

..

.

.

2100 2120 2140 2160 2180 2200

time

0.3

0.4

0.5

0.6

0.7
no

rm
al

iz
ed

 d
en

si
ty

Evolution of IC density
global mixing

0

0.2

0.4

0.6

0.8

1

av
er

ag
e 

lo
ca

l f
itn

es
s 

C
A

’s

B

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

.

.

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

.

.

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

.

..

.

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

.

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

.

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

.

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

.

..

..

.

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

.

.

..

.

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

..

.

..

..

..

..

..

..

.

.

.

.

..

..

..

..

..

..

.

.

.

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

.

..

.

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

.

.

..

.

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

.

.

..

.

.

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

..

..

.

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

.

..

.

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

..

.

.

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

.

.

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

.

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

.

.

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

.

.

..

.

..

..

..

..

..

..

.

.

.

.

.

.

.

.

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

.

..

.

..

..

..

..

..

..

.

..

.

..

..

..

..

..

.

..

..

.

.

.

.

.

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

.

.

2100 2120 2140 2160 2180 2200

time

0.3

0.4

0.5

0.6

0.7

no
rm

al
iz

ed
 d

en
si

ty

Evolution of IC density
base model

0

0.2

0.4

0.6

0.8

1
av

er
ag

e 
lo

ca
l f

itn
es

s 
C

A
’s

Figure 4: Evolution of IC density over 100 time steps in
mixed model (A), and base model (B). The densities of all
individuals are plotted as dots, the average local fitness val-
ues are plotted as thin lines. The population of ICs in the
mixed model switches en masse from their density class, also
characterized by short drops in average CA fitness. In the
base model two subpopulations of ICs exist.

the ICs correctly, heret � 2110, the density distribution of
the IC population starts to broaden considerably. When all
CAs classify all ICs correctly the ICs experience neutral se-
lection rather than selection toward low density values. The
mutational bias brings about the drift of ICs toward density
values of 0.5. As soon as ICs arise with a density larger than
0.5 the IC population jumps from class 0 to class 1 en masse
and the same picture is seen again.

In fig.4B we see that in the base model the IC population
has speciated into two distinct subpopulations of ICs, with
densities around 0.4 and 0.6, which stably coexist. Thus, at
the phenotypic level the diversity of ICs is much larger in the
base model than in the mixed model. Nevertheless, the num-
ber of unique IC genotypes in the mixed model is actually
larger than in the base model. For the simulations discussed
above we counted the number of unique genotype in 15 gen-
erations between t=600 and t=2000, at every 100th time step.

In the mixed model on average 454.1 unique genotypes are
present (�=83:1), in the base model on average 369.3 unique
genotypes are present (�=14:1). For the CAs we find in the
mixed model an average of 321.8 (�=88:9), and in the base
model an average of 179.7 (� = 17:0). Thus, in the mixed
model we find much more unique genotypes than in the base
model. However, this may largely result from the long peri-
ods of neutral selection in the mixed model.

3.3 Evolution and maintenance of diversity

Rather than looking at the number of unique genotypes we
can also look at how genotypes are distributed over the geno-
type space. In the lower panel in fig.5 we have plotted
the hamming distance of ICs in the base model within and
between the subpopulations of the different density-classes.
Whereas the hamming distance between ICs of different sub-
populations is expected to be relatively large, the hamming
distance of ICs of the same subpopulation of one generation
is also very large. In fact, the distance between ICs of differ-
ent subpopulations peaks near the distance which is expected
between two random ICs, i.e. 75 bits; within a subpopulation
the hamming distance distribution still peaks around 60.
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Figure 5: Distributions of the hamming distance between ICs
of base model (lower panel) and between ICs of mixed model
(upper panel), at generation t=2000. Lower panel: hamming
distances are calculated between all ICs with a density lower
than 0.5 (solid), all ICs with a density higher than 0.5 (dotted),
and between ICs of different subpopulations (dashed). Upper
panel: hamming distances are calculated between all ICs of
the population.

In the top panel we have plotted the hamming distance of
all individuals in a population of ICs in the mixed model at
t = 2150. These ICs have a large range of density values and
have undergone a long period of neutral selection (fig.4A).



Nevertheless, the hamming distance of the ICs peaks at much
lower values than in the base model.
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Figure 6: Hamming distance distributions in base model (A)
and in mixed model (B). For each model the distribution
of eight generations are plotted from t=1300 (lower left) to
t=2000 (upper right) for every 100 time steps. CAs in the base
model are always widely distributed with many CAs having
hamming distances around 40 bits. In the mixed model the
distribution varies per generation but peaks generally at lower
values and sometimes at extremely low values.

Note that in the base model some ICs within subpopula-
tions have small hamming distances. In the mixed model al-
most all ICs are at least 20 bits apart from all other ICs. This
suggests that in the mixed model all ICs are distributed over a
large area in the genotype space. In the base model, however,
the ICs are distributed in a few distinct clusters.

In Fig. 6 we show hamming distance distributions of the
CAs in the mixed model (6A) and in the base model (6B).
For each model we plotted the hamming distance distribu-
tion of 8 generations, between t=1300 and t=2000, every 100
time steps. In the base model we see that the distribution al-
ways has a large peak for large hamming distances as well
as appreciable numbers of small hamming distances. In the
mixed model the distribution tends to center around one or
two peaks, the median of which varies considerably. Again,
in the base model CAs are distributed in a number of dis-
tinct clusters. In the mixed mode, on the other hand, the CAs

are sometimes focussed in a small region in genotype space,
sometimes they form clusters as well (see also below). This
results from the evolutionary dynamics that the CAs experi-
ence in the mixed model; long periods of neutral selection
separated by evolutionary bottlenecks and short periods of
strong selection.

When we perform a cluster analysis on the genotypes of
CAs in the mixed and the base model we do not find clearcut
differences between the two models, although further anal-
ysis is needed. When we perform a cluster analysis on the
phenotypesof CAs we find a clear difference between the two
models. For this purpose the phenotype of a CA is defined as
the classifications it makes on a set of 500 initial conditions.
The initial conditions of this set have density values that are
uniformly distributed between 0.4 and 0.6. The phenotype of
each CA is determined on the basis of the same set of initial
conditions.

In the base model the cluster analysis shows that often a
small number of distinct clusters exist, optimal numbers be-
ing mostly between four and nine. A cluster analysis on the
phenotypes of CAs in the mixed model shows that indeed
only one large cluster exists: all CAs behave equally “single-
mindedly” in their classification behavior.

3.4 Spatial pattern formation

A

B

Figure 7: A: Snapshots of spatial distribution of the IC pop-
ulation at 5 consecutive time steps in the base model. ICs of
density class 0 are depicted in black, ICs of density class 1 are
depicted in grey. B: Space-time plot of IC population over
180 time steps, time going from left to right. ICs of differ-
ent density classes are distributed in complex wave patterns
which overtake each other continuously.

The question that arises is how the phenotypic diversity of
the CAs and the ICs and the distinctiveness of the species into
which they cluster is maintained in the base model. Figure 7A
shows five snapshots of consecutive time steps of the spatial
distribution of the ICs of different density classes. The ICs
of class 0 are colored black and the ICs of class 1 are grey.
The ICs are distributed in many small patches rather than in
only a few large patches. In fig.7B we show a space-time plot
of the ICs over a period of 180 time steps in which we plot
a vertical cross-section of the grid at consecutive time steps.
The space-time plot shows that complex wave patterns are



present; patches of black ICs grow into patches of grey ICs,
and vice versa. As a consequence, at any one point in space
ICs of the two density classes alternate frequently. This al-
ternation of the two density classes is not primarily a result
of mutation, which causes the global oscillations of the aver-
age IC density in the mixed model, but it is a result of spa-
tial dynamics. In the base model, ICs ‘chase’ CAs not only
in genotypes-space, as in the mixed model, in addition they
‘chase’ them in space-space.

A B

C D

Figure 8: Snapshots of the spatial distribution of the CAs in
the base model. The color coding is based on cluster analysis
of the CAs. In A) and B) the cluster analysis is based on
the phenotype of the CAs (see text), in C) and D) the cluster
analysis is based on the genotype of the CAs. A) and C) are
snapshots at t=400, B) and D) are snapshots at t=900. CAs
that belong to a single cluster are distributed in small patches
in several locations in space.

We studied the spatial dynamics of the CAs in the base
model using a color coding which shows the results of the
cluster analysis discussed above (fig. 8). The CAs are clus-
tered according to their phenotype (8A and 8B) or their geno-
type (8C and 8D), each at two time steps. Similar to the spa-
tial distribution of the ICs, also in this case the CAs belonging
to a single cluster occur in patches, and sometimes in more
than one.

Given the results presented above the following picture
arises of the eco-evolutionary process as it occurs in the base
model. At the population level the CAs and ICs are split in
several distinct clusters, or species, which come about by lo-
cal specialization. A species is present in one or more patches
in the field. At the boundaries of the patches species com-
pete with other species, but the number of players in a single
competitive interaction is small, typically two or three. Fur-
thermore, each competition occurs in the context of the op-

ponent population. This opponent population is also hetero-
geneously distributed in space. Thus, competition between
species within one population occurs, in parallel, in differ-
ent contexts. Because species are distributed in a number of
patches they will generally ‘see’, i.e. compete with, all other
species simultaneously, as in the mixed model or other mod-
els with global interaction structures.

However, the main difference between the base model and
the mixed model is that in the base model at the individual
level the interactions are localized in space and time; dur-
ing some time individuals interact only with individuals of
one type, or of very few types. Also the short-term effect of
the coevolutionary process remains local in space; individ-
uals can have prolonged interactions with a small number of
other individuals, thus giving the opportunity of local special-
ization. Despite (or thanks to; Pagie (1999)) the lack of local
diversity we see evolution of general behavior, i.e. behavior
that is successful under many different circumstances.

4 Conclusion

We have studied a coevolutionary model of two antagonisti-
cally interacting species. We compared the evolutionary dy-
namics that occur if individuals remain localized in space,
i.e. when spatial pattern generation occurs, and the evolu-
tionary dynamics that occur if individuals are globally mixed
every time step. In the first case we find that individu-
als evolve a generalized response to environmental circum-
stances, whereas in the second case the systems exhibit evo-
lutionary oscillatory dynamics. In that case we see the evo-
lution of much simpler behavior, which is optimized with re-
spect to one of the possible states of the other species. This
strategy makes them easily exploitable, however. As a result
we see red queen dynamics where both coevolving species
oscillate between two states.

We found that the diversity of the populations of CAs and
ICs differs greatly in the two models, albeit differently at dif-
ferent levels. The mixed model shows higher numbers of
unique genotypes in the population, whereas the diversity on
the level of phenotypes is almost completely absent. Also, the
diversity that we find in the base model, both at the level of
the genotypes as at the level of the phenotypes, is structured,
i.e. it occurs in distinct clusters, or species. This variety in the
base model, however, is distributed over time and space. At
the level of the individuals the interactions and selection pres-
sures may be of a single type for extended periods of time.
Locally, individuals experience sparse fitness evaluation, i.e.
they ‘see’ only a few fitness cases which are often of a single
type, but overall we see the evolution of general behavior, i.e.
information is integrated at the individual level (Pagie, 1999).

Other studies of coevolutionary optimization models that
include techniques to maintain high diversity in populations
also show evolution of general behavior (e.g. Paredis (1995);
Rosin & Belew (1997); Juill´e & Pollack (1998)). In these
models individuals still interact at a global level, i.e. every



individual ‘sees’ all other individuals and diversity is not nec-
essarily preserved in terms of distinct species. In our model
speciation is the result of thelocal eco-evolutionary dynam-
ics and diversity is therefor ‘cheap’. It is an open question
to what extend the evolution of diversity and speciation de-
pends on parameters of the evolutionary process, and how it
influences the evolution of general behavior. It will be inter-
esting to compare the evolution of diversity, speciation and
general behavior under different parameter settings and also
to models that use other techniques.
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