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Structure oriented models do not use (and do not need)
apriori and externally specified goals in order to show
adaptive selfmodifying or learning abilities. They employ
the structure of the model behaviour to generate local
structure enhancement. Such structure oriented, non goal
directed methods, like non supervised pattern analysis
methods (e.g. cluster analysis) seem often to be more
powerful than their goal oriented counterparts even in
those cases were apriori goals seem to be available. They
certainly are, if no well formulated goals are available
prior to the research under consideration, which is the
more common case.

1. INTRODUCTION

Modelling and simulation methodology moves in the direction of
incorporating more and more of the process of 'modelling in the
large' in the formalised part of modelling. Notably methodologies
exist for automated model generation, manipulation of knowledge
bases used in and generated by models, and 'multifacetted
modelling'. At first sight "goal-directed models" with variable
structure, adaptive, selfmodifying or learning ability seem to be
an important step in this direction. In our opinion such a
methodology which  presupposes preconceived goals can only
contribute marginally to the 'goal' of formalising modelling in the
large because the purpose of modelling is largely to discover, sift
out and elucidate pursueable purposes. Moreover working with
preconceived goals may harm the attempted modelling area.

In this paper we argue that variable structure models with adaptive
selfmodifying or learning ability do indeed increase the power of
our modelling formalisms considerably, but that it is a mistake to
conceive such models as being primarily goal directed.

First we give our apriori reasons for considering non-goaloriented
models (section 2), next we discuss variable structure models
(section 3) and learning systems (section 4) and finally we combine
these lines of our argument and show the feasibility and power of
structure oriented models by elaborating on the theory of
individual oriented variable structure modelling which we have
developed over the past several years as MIRROR modelling
methodology (Hogeweg & Hesper 1979,1981A,B, 1983,1985A,B,1986) .
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2. ON THE NEED OF NON-GOALDIRECTED MODELS

There are several types of reasons why we need non goaloriented
models.

1. Whence do we get our goals?

The answer to this question is "by modelling”. In particular
modelling provides us with concepts and potential relationships
between concepts. A classical example in case is the search for
black holes. Likewise without a model no one would contemplate to
develop a model which uses social structure as timing device (see
Hogeweg & Hesper 1985).

Moreover in many cases it is much easier to formulate an
interaction structure which could represent an object to be
modelled than to formulate the behaviour of that object (e.g.
Lotka-Volterra positive and negative interactions vs its dynamics
of neutral oscillations (i.e. undamped oscillations with an
amplitudo dependent on the initial state).

2. Presupposing well formulated goals is begging the question of
modelling.

The simplistic image of modelling, i.e.: "Given a set of
input/output relations find a model to describe them" has the form
of strictly goal directed modelling and has of course a trivial
solution: the list of input/output pairs itself. Such a model is
100% correct for the well formulated goal and 0% for the implied
but not formulated goal: other input/output pairs.

Also in the much more sophisticated model methodology of Zeigler,
Klir, Wymore and Elzas (see Elzas 1984 for a review) an actual
simulation model 1is shaped relative to an "experimental frame",
"observation channel” or “"set of feasible test items", and such
output (goal) oriented models tend to generate relatively little
new knowledge because the model structure is expressed in terms of
the same concepts as the model results. This is the easiest way to
achieve a goal. In contrast a very important contribution of
variable structure modelling methodology is the possibility of
studying truly emergent properties of the model, i.e. properties
which can only be expressed in terms of novel concepts, not used in
the model formulation (Hogeweg & Hesper 1986, see also section 3).

3. Pattern recognition methodology demonstrates the role of non
goal directed methods.

Methods which seek a structure in a dataset without defining
classes a priori, are called non-supervised methods in pattern
recognition. Even in cases that apriori defined groups are sought
such (simple) non-supervised methods often prove to be more
powerful than sophisticated supervised methods (e.g. 1if the
predefined classes are subdivided in several noncontiguous
'clusters' in state space). Moreover, the newly defined concepts
which reflect the structure of the data can often be related to
additional (partial) knowledge about the data which is not included
in the analysis.

4. Selfmodifying models do not need goals. b
There is an existence proof that self-modifying, adaptive
self-structuring systems do not need goals: the biosphere (at least
as perceived by biologists!). Moreover the structure of science
seems to fit better in this description than one in terms of
predefined goals.

A selfstructuring modelling process does not imply randomness in
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the resulting knowledge aquisition because the knowledge seeking
path will be generated by the structure of the environment which
supports the modelling: in science ultimately the structure of the
universe. Only if the modelling environment is unstructured or is
overhauled by the bulldozers of preconceived goals the knowledge
seeking paths may lead to naught.

3. SYSTEM-ORIENTED VS INDIVIDUAL-ORIENTED VARIABLE STRUCTURE
MODELS

Variable structure models are recognised as a class of models by
Oren (1975,1979,1985). They are models in which the model
specification at the level of coupling of systems (Zeigler 1976,
Klir 1979) is not fixed but variable. Therefore such models must be
specified at a higher level comparable to Klir's metasystem level
(Klir 1979). The system behaviour consists of both changes in the
variables (like any fixed structure model) and in changes of the
components and their interconnections. This definition of variable
structure systems is rather broad and includes e.g. neural networks
in which the strength of the interconnections is changed during the
simulation and cellular growth models (e.g. L-systems (Lindenmayer
1968) and their non-synchronous counterparts (Hogeweg 1980) in
which the set of component systems (i.e. cells) changes (increases)
during the simulation but in which the coupling remains as similar
as is compatible with the varying components. Arguing that neural
networks and cellular growth models do not need a novel
methodology, Zeigler (1986) tries to narrow down the definition of
variable structure models by distinguishing a class of
"non-trivial" variable structure models which excludes the above
mentioned cases. He requires for this set of non-trivial variable
structure systems that the model specification distinguishes
between"ordinary behaviour"™ (i.e. the change of variables) and
"structural behaviour”™ (the change of components and couplings
between components) and that phases of ordinary behaviour are
punctuated Dby periods (of non-zero durations) in which the
structure of the models is changed and the behaviour state of the
former structure is linked to the behaviour state of the novel
structure. Thus this class of variable structure systems correspond
to a sequence of fixed structure systems and the transitions
between them.

In contrast Hogeweg & Hesper (1979,198la,b,1983,1985a,b,1986) have
developed a class of variable structure models in which fixed
structure is an (interesting) emergent property of the system which
may occur locally (i.e. wusually involves only part of the system)
and may last for some time but can dissolve again. These systems
are in several ways more truly a variable structure than the ones
considered by Zeigler, in particular because:

1. Variable structure is the normal mode, fixed structure 1is an
interesting "side effect”

2. The couplings between the (variable) set of components changes
in a less restricted way: apart from the "ancestry based”
inheritance of couplings which Zeigler uses (and also occurs in the
above mentioned cellular growth models), and precoded couplings (as
occur in many rule based "expert" systems) we also use a
"neighbourhood"” based coupling. Such neighborhood based coupling is
much less predetermined than the “"ancestry based" and “"global
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receptor b@sed" coupling (compare even e.g. Beelers worm whose
behaviour is shaped by meeting traces of its previous behaviour:
this may lead after an arbitrary long time to death).

3. The behaviour of such systems is not studied in terms of
predefined changes in variables and predefined structure changes
but in terms of novel concepts which emerge during the simulation.

4. Such systems need novel methodology, not only for the
specification of the system and consistency checking (as emphazised
by Zeigler) but in particular for the observation of the system.

The differences between these two classes of variable structure
models which go beyond the (too) simple variable structure models
mentioned above, is rather profound. Zeiglers approach is
essentially a global top-down approach. The specification focusses
on the system as a whole. Component systems are defined as parts of
the whole (compare the pruning of the entity structure to obtain a
model in Zeigler's multifaccetted modelling methodology). 1In
contrast our MIRROR models aim at a maximally local definition of
entities to make a truly bottom up approach feasible. Thus the
component systems are defined as autonomous entities (individuals)
whose behaviour is dependent on their local environment. They
actively extract information from their environment and are
therefore viable in a large collection of environments (consisting
of acollection of individuals), i.e. they are not defined as parts
of a whole. This autonomy of the component systems is crucial in
the context of bioinformatic models (i.e. models for studying
informatic processes in biotic systems) because in that case we
surely do not want to impose externally the "organisation of the
system” but want to understand the organisation as an emerging
property of the collection of individuals under consideration. This
organisation can have the form of an emerging fixed structure but
usually such fixed structures contain only part of the system (and
last only part of the simulation period). Thus, viewed from the
"system as a whole" viewpoint the systems consist of a sea of
changing structures in which fixed structures take shape and
dissolve again.

To distinguish the two approaches we will designate them global or
system oriented variable structure systems and local or individual
oriented variable structure systems: wve do not think that
non-triviality is a distinguishing property of the former approach.

4. SELFMODIFYING AND LEARNING SYSTEMS

In this section we review some of the concepts and distinctions
which have emerged from the research on learning systems.

4.1 Degree of prestructuring of input

In classical learning systems (e.g. the classical neural network
learning models mentioned above) the observational universe of the
learning system is rigidly prestructured, i.e. a predefined set of
objects is observed through a predetermined set of features (which
are therefore known to be applicable to all objects). Thus the
objects are known to the system as a vector of feature values, and
no problems exist with respect to matching features (the homology
of features). More recently, learning systems are studied with less
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prestructured input (e.qg. Winston 1975,1982,1986, Michalski
1986a,b, Sankoff & Kruskal (1983), Hogeweg & Hesper 1984): the
homology of features 1is not given but should be found by the
system, and relevant features should be sought. This is done by
incorporating the semantics of the features into the system and by
considering the structuring context of the features. Note that
features are only a weaker form of apriori structure definition;
the point is, however that it is weaker. Learning systems operating
in the "real world" (or in a model world) neccessarily are at least
of the second type.

4.2 Supervised vs nonsupervised learning

This distinction, also labeled with the terms learning s.s. Vs
discovery or learning from observation reoccurs in all subfields of
learning and pattern analysis. In supervised methods there 1is a
prior definition of what is to be learned by the system (there is a
teacher who knows better), whereas no such priori definition exists
in the latter case. Supervised learning very often takes the form
of learning by examples (and counterexamples) from these examples
(i.e. from this "paradigmatic definition of the concept 'class')
the system is to generate a description of the class and/or a
decision rule for the membership of the class (i.e. generate an
intensive definition of the concept/class).

In contrast non supervised learning methods generate
concepts/classes which are "interesting” for the information under
consideration. Interesting because the available information can be
conveniently expressed in terms of the generated classes/concepts
or because the classes/concepts are useful as building blocks for
higher level concepts.

The feasibility of both approaches depends on the structure of
primary information. Non supervised methods degenerate if

1. The primary information is unstructured: any class/concept then
is as good (i.e. bad) as any other. Pleas for adding goals to non
supervised methods usually use such unstructured examples (e.g.
Stepp & Michalski 1986). Such examples remain however useless
whatever is done to them.

2. Several conflicting structures are present in the data. In that
case most methods do not expose the conflicting structures but come
up with some compromise which renders the generated concepts
uninterpretable. This is harmful if the concepts are to be used as
building blocks for higher level concepts. Better interpretability
can be achieved by:

(a) pattern enhancing techniques which filter out one of the
structures (e.g. by iterative character weighting, Hogeweg 1976)
adding constraints to the concepts to be formed (e.g. monothetic
clustering techniques (e.g. Williams & Lambert 1960), Constrained
clustering (austin 19..), Conceptual clustering (Michalski & Stepp
1984) or adjusting the concept definition so as to allow for easy
recognition (Oligothetic characterisation of clusters (Hogeweg &
Hesper 1981c))

Like the non supervised approach, the supervised approach may
degenerate into a useless exercise in several ways:

1. To 1learn well defined concepts 1is useless: why not use the
definition.
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2. Correct recognition of the previously given examples is always
possible by matching to the (completely stored) examples

3. Generalisation beyond the given examples is only possible if the
concepts to be learned are 'nicely' represented in the data and if
no conflicting structure prevents its recognition. For example if a
concept is represented in the data as two clusters separated by the
cluster representing the concepts to be distinguished from it, most
supervised methods fail, (whereas nonsupervised methods may come up
with 3 concepts (corresponding to the clusters) which can easily be
combined into the two desired concepts). Also, a priori defined
concepts which are just a little askew with the data available are
hard to recognise while the skewness may arise from the not well
definedness of the concepts (compare 1l). Also in this case
non-supervised methods may help by coming up with a more useful
definition of the concept.

Thus we conclude that both types of learning are feasible only if
the data are well structured. In addition, supervised methods are
only wuseful if the supervised concepts match the structure of the
data, which is usually only the case if the concepts are derived
(learned) from observatiom of the data (i.e. by (implicit)
non-supervised learning). Although the concepts some people want to
teach their machines may be implicitly derived in this manner (e.q.
'arches’' or 'dogs') they cannot be if the data are never observed
before, as is the case in novel situations, e.g. those created by
model universes.

4.3 Engineering vs modelling viewpoint of learning

From the early days (in the fifties) of machine learning onwards,
many of the learning systems have had a dual interpretation: that
of a model of a (biotic) learning system and that of a tool to
perform a learning task. Examples of such model/tool interpretation
of identical (or very similar) systems are e.g. Perceptrons
(Rosenblatt 1958, vs machines using discriminant functions (Nillson
1965); Neural networks vs Distributed parallel systems (see e.qg.
Rumelhardt 1986, Martin 1986 but also much older literature);
Evolutionary models vs Genetic algorithms (cf Holland 1975, 1986);
Human learning vs adaptive expert systems (cf Simon 1984, Michalski
1986, Rosenbloom & Newell 1986, Anderson 1986, Davis & Lenat 1982,
Lenat 1984).

All learning models fall in the class of variable structure models:
without a changing structure they would not learn. Some fall in the
above mentioned class of "trivial" variable structure models (e.g.
neural networks) in which only parameters (strength of couplings)
are changed. Others fall in the class of individual oriented or
object oriented variable structure models (object oriented models
are similar, but less local, than the individual oriented variable
structure models discussed above) (e.g. genetic algorithms, Actor
(message passing) systems (Hewitt 1977, Lenat 1975), Transfer-frame

based and Censor-based learning (Winston 1978,1986), Chunking and
Knowledge compilation (Rosenbloom and Newell 1986, Anderson 1986),
Society of mind models (Minsky 1987) etc.). h

Not only are learning models variable structure models, the
converse is true as well: variable structure models can virtually
alvays be interpreted as learning systems (see below).
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4.4. Learning as adaptive behaviour vs learning as building and

manipulating representations of experience.

Any system which changes its behaviour dependent on the environment
in which it finds itself can be considered as learning or
"adaptive" system. If no apriori definition is given of what is to
be learned (i.e. in a non-supervised system, e.g. the biosphere,
mathematics (see Davis & Lenat 1982)) any behaviour change is
almost bound to be equivalent to learning (or optimising)
something. Although this fact is sometimes cited as a criticism of
evolution theory, it can better be interpreted as a very powerful
fact about variable structure systems. Nevertheless it is sometimes
useful to employ the more restricted definition of learning
proposed by McCarthy (1968): "Learning is building and manipulating
representations of experience". Learning in the latter sense
increases considerably the power of variable structure models
(which automatically are learning systems in the former sense).

5. SELFMODIFYING VARIABLE STRUCTURE MODELS

From the previous lines of arqgument we conclude that a valuable
class of models has the following properties:

1. No global goal is defined apriori. Instead an apriori structure
definition generates locally pursuable purposes

2. the structure definition is of the type of an individual
oriented, local, truly variable structure one.

3. Learning is an integral part of the model and includes

selfmodification, adaptation and representation generation and
manipulation. The prestructuring of the data needed for interesting
learning is generated by the model, the emphasis is on

non-supervised learning methods although supervision for learning
can be generated by the model as well.

4. The variable structure and learning capabilities of the models
serve both the model itself (s.s.) and the modelling methodology.

MIRROR modelling is our attempt to develop a such a methodology.
Within this framework we have previously shown that:

1. We need individual oriented models if the models are to reflect
the informatic structure of the system studied (Hogeweg & Hesper
1979,1983,1985); individual oriented models generally have a
variable structure.

2. Ww need variable structure models to model variable structure
systems (Hogeweg & Hesper 1979,1983,1986)

3. Surprisingly simple 1individual oriented variable structure
models can generate surprisingly complex, selfregulating and
'multifacetted' behaviour (Hogeweg & Hesper all references, see
especially 1983,1985,1986)

4. We need sophisticated knowledge seeking processes in such models
(Hogeweg & Hesper 1981,1986)

S. Selfstructuring through building and manipulating
representations of experience is feasible and desirable (MICMAC
modelling) (Hogeweg & Hesper 1979,1981)

In this paper we go beyond this previous work 1in showing that
structure recognising and structure enhancing processes within such
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systems provide a means to include a still larger part of modelling
in the large in the formalised part of modelling, and forms a
(better) alternative to "goal oriented modelling". In particular we
discuss the recognition of locally fixed structure by DWARFs
(section 6) and its use in gradually restructuring models (section
7). Finally we discuss how different modelling paradigms (i.e.
"quantitative" models vs "qualitative" models (i.e. models in the
qualitative reasoning paradigm of AI) and classification vs
modelling s.s. are unified through these concepts.

6. HOARDING STRUCTURE IN MIRROR MODELS

6.1 DWARFs, JEWELs and GEMs

The basic structure recognising entities in MIRROR worlds are
DWARFs. DWARFs simply search for invariant relations by keeping
track of activities and revivals of other MIRROR entities (possibly
other DWARFs). REVIVALS represent the "who reacts on whom”
structure of the system. Activities include procedure calls and
changes in variables

If a DWARF finds an invariance (i.e. the tracked entity is
repeatedly revived by the same other entity, calls repeatedly a
procedure with a same parameter or changes a variable to the same
value) a JEWEL is placed in its HOARD.

A HOARD is shared by DWARFs with similar concern, e.g. because they
track the same entity. Placing a JEWEL in a HOARD causes other
DWARFs to reexamine their memory tracks using the JEWEL as a tool.
The DWARFs revived by the addition of a JEWEL to a HOARD are all
those which:

1. are concerned with the same individual (looking at other
properties than the DWARF who made the JEWEL).

2. are concerned with the entities (individuals, procedures,
variables) which occur in the JEWEL as values of the JEWEL. For
instance a JEWEL representing the fact that individual A was
repeatedly revived by the activity P of individual B will revive
the DWARF tracking who revives B and the DWARF tracking the
activity P of B.

The DWARFs revived by a JEWEL use it to focus on:

1. the time period indicated by the new JEWEL. Being able to focus
on a time period makes it feasible to detect a wider class of
patterns than just invariance as the DWARF does without any focus.
For example they look wether a value changes monotonically in the
period, or wether it takes only a few values.

2. The 'interesting events' (Hogeweg & Hesper 1981) punctuating
the invariance. The emergence of an invariance and especially the
end of an invariance are interesting and the events happening at
those times are important in a higher level description of~the
system. Therefore the revived DWARFs check wether their tracks took
a turn at the beginning or end of the invariance represented by the
JEWEL, i.e. whether the entities tracked by them participated in
the interesting event. Such an analysis of the interesting events
is added as GEMs to the JEWEL.
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3. the entities involved: did they occur in their tracks, e.g. as
the value of a parameter or variable?

Any structure found in this way is added to the HOARD (and linked
to the JEWEL which was used as tool). The addition of these new
JEWELs again revive DWARFs.

An interesting special case is if DWARFs in 'jeweling mode' are
revived by JEWELs, i.e., DWARFs who detected an invariance which
remains valid during the interesting event terminatirng the
invariance detected by the reviving JEWEL. The two JEWELs are
likely to represent conflicting structures of which only one
survives the interesting event. This 1is noted and a new DWARF
tracking potential conflict is generated: it tracks the DWARFs.

6.2 Example of a functioning HOARD

As a simple example consider a HOARD in the SKINNY universe (cf
Hogeweg & Hesper 1985,1986; SKINNIES are social individuals who
interact by a dominance interaction (DODOM) and who know each other
personally, i.e. they build a representation of the other
individuals in their SKINSPACE (mental SPACE)). DWARFs track e.g.
DODOM interactions and look for invariance of the DODOM parameter
(the one which receives the DODOM behaviour). Such invariances are
readily detected: pairs of SKINNIES tend to split off the group.
Surprisingly such invariances also exist in the larger group but in
that case they are mostly not symmetric: SKINNY A only interacts
with B but B interacts also with other SKINNIES. This discrepancy
is noted because the JEWELs of A revive the DWARFs tracking DODOM
of B. The latter DWARF notes that B interacts with several (but a
small subset of all) SKINNIES and links a JEWEL to the first with
this less stringent invariance.

After several such augmented JEWELs are formed an interesting
question (adressed by OBSERVERs, see Hogeweg & Hesper 1986) becomes
what are the differences between SKINNY A and B? In this case the
DWARFs supply the set of objects and the supervision for a pattern
analysis (learning) task of the OBSERVERs. It appears that SKINNY B
is always the more dominant one (Both in the mental space of A and
in that of B).

6.3 Multilevel modelling and HOARDs

The resulting HOARDs can be seen as representing the behaviour of
the system in a way similar to the apriori definition of the system
in system oriented variable structure modelling. Augmented JEWELS
represent (parts of) the system in ‘'ordinary' (= (semi) fixed
structure) mode and their behaviour pattern. The GEMs, representing
the interesting events punctuating JEWELs, represent the systems
structural behaviour pattern. However the important differences
are:

1. This description is a result of the modelling, not its apriori
definition;

2. It 1is a local description which involves (changing) parts of the
entire system;

3. It 1is a multilevel representation: structural behaviour at one
level (represented by one set of JEWELs) is 'ordinary behaviour' at
an other level which has recognised the pattern in interesting
events. .
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7. JEWELS AS TOOLS

DWARFs hoard JEWELs which are used by DWARFs as tools to make and
hoard more JEWELs: Jeweling is both means and end for DWARFs.

JEWELs can also be used by other entities of the MIRROR world, for
example by the OBSERVERs mentioned above (obviously JEWELs are nice
to observe!). Moreover the JEWELs can also be used to change the
universe. Changing the universe can mean:

1) the (macro) behaviour remains the same but the mechanisms which
generate this behaviour change: i.e. the informatic structure
generating the behaviour is changed (optimised): MICMAC modelling.
2) the informatic structure of the model remains the same (similar)
but the macro behaviour is changed (e.g. by a change of the
parameters or a local change in the interaction pattern): structure
enhancement by WIZARDs.

7.1. MICMAC modelling

The MICMAC modelling principle has been developed by us several
years ago (Hogeweg & Hesper 1979,1981). The basic ideas behind this
methodology are: (1) only '"interesting' events should be
represented in the model; (2) Interesting events are those events
which ‘redirect a (sub) process from its "expected" course of
behaviour; (3) The purpose of modelling is to form and refine
expectations about (sub) processes; (4) such expectations can be
formed by the model itself; (5) these expectations can be used by
the model to select interesting events; (6) in this way, piecemeal,
the model can restructure itself in a multilevel, heterarchical
manner; (7) The original definition of the system should be
retained so that the system remains "open" to unexpected events,
which it handles in the basic lowest level definition.

Thus MICMAC modelling aims at generating new higer level
definitions of the model without changing its (original) behaviour.
JEWELs and GEMs provide this higher level definition. The (partial)
invariance of the JEWELs can be exploited: a much simpler model
often suffices to generate the variable changes during this period
(much remains invariant and the changes which do occur can often be
'predicted' by mimicking previously hoarded JEWELs (Hogeweqg and
Hesper 1981).

However, in order to use this shortened behaviour definition the
occurrence of a state which will generate a JEWEL similar to the
already hoarded JEWELs should be recognised. Thus, the cost of
simple large-scale behaviour rules is paid in terms of
classification ability. This classification ability can be obtained
using simple learning schemes because the learning problem is
prestructured by the DWARFs: they define the set of instances to be
classified as well as the features which can be wused for the
classification. Athough the JEWELs can also provide a useable
supervision for this learning we find it wuseful to use
nonsupervised methods on the set of systems states selected by the
JEWELs: although JEWELs may be superficially similar they can arise
from different circumstances: recognising these differences even
when the results appear to be similar enhances the reliability of
the classification.
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7.2. Structure enhancement by WIZARDs

Like in MICMAC modelling the system is restructured piecemeal.
However, unlike MICMAC modelling the behaviour of the system is not
supposed to remain identical to the original system, but should
enhance the patterns occurring in the original system. Moreover,
the restructuring occurs at the level of (or below) the level of
the the original definition of the system, using, however the
higher level representations of the system generated by the DWARFs.

Structure enhancement is the work of WIZARDs; WIZARDs try to change
the original definition of the system so that the structure
represented by the JEWELs will occur more frequently in the system.
However, in doing so they are not supposed to enhance the
information processing capabilities of the original entities 1in a
goal directed manner. For example it is not allowed to tell a
SKINNY to stick to a SKINNY it has interacted with during some
time: such a redefinition would annihilate the interestingness of
the studied phenomenon and structure enhancement would degenerate
to MICMAC modelling without error checking. Moreover WIZARDs are
often not supposed to differentiate at the definitional level
between entities which were originally defined identically: the
differentiation of entities is to remain a purely 'environmental’
phenomenon. Therefore WIZARDs, unlike DWARFs and MICMAC modelling,
should look beyond the local structure of the model: the changes
they make affect the entire universe.

In a very preliminary implementation, a WIZARD, having noticed that
pairswapping between SKINNIEs (who usually stick to their original
partner) occurred mainly when (a) each pair had one very low ranked
individual and (b) the original partners lost sight of each other,
lowered the stepsize of lowranked SKINNIES which resulted in an
increased pair formation and an increased fidelity of the pairs.

A world change effectuated by a WIZARD generates a rival WIZARD:
one which wants to undo the change and even wants to go beyond that
by affectuating the opposite change. The rival WIZARD of the above
metioned WIZARD increased the walking speed of low ranked
individuals, which results in quite a different structure: meetings
of pairs almost always result in a partner exchange such that the
SKINNYs which are closest in rank remain together.

Thus WIZARDs explore possible universes. How their conflicts should
be resolved is not yet known: it looks as if they can only fight it
out (as has been recounted in many tales).

8. DISCUSSION

Classical mathematical and simulation models can be represented as
a fixed network of interacting entities, and the next state
function of the system is maximally generalised, i.e. it is defined
as much as possible without reference to the particular state in
which the system occurs. This is especially true in mathematical
models and simulation models closely linked to mathematical
formalisms (e.g. continous systems models). In event and process
(object) oriented models next state functions can be specified
relative to the state (change) of the system, but, no elaborate
state recognition capabilities are used because the relevant
states/events are fixed.
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In contrast, much "naive" (but very powerful!) modelling depends
largely on the correct recognition and classification of the state
of the system. For each class of states a different next state
function is used which is largely derived from experience. Clancy
(1988) has correctly recognised that expert systems fall into this
class of classification dependent models. Moreover, Hardt (1988)
demonstrated the power and limitations of a classification oriented
approach (called "qualitative reasoning"” in AI) by comparing
classical diffusion equations (which are general but hard to solve)
and their qualitative counterparts. Very simple qualitative rules
(whose applicability depends however on the correct recognition of
subproblems) suffice to derive estimates of the time it takes of a
substance to diffuse from A to B. However, trying to convince the
audience of the validity of her qualitative rules she took resort
to the diffusion equations and to "it turns out that".

In their representation of the aquisisition of knowledge about
physical systems Forbus & Gentner (1986) recognise four stages,
i.e. "naive physics, causal relations, process models, and
mathematical theory. The earlier stages are knowledge rich, the
later stages progressively incorporate less knowledge. This
sequence corresponds to moving from more classification oriented
models to general nextstate function models, and this seems indeed
the way science has progressed. Indeed simplicity (Occams razor, cf
e.g. Russel 1946) has always been an important principle in science
and has indeed been interpreted as minimising a.o.the state-space
knowledge in the model formulation. Simple models which incorporate
little explicit knowledge are so powerful because their simplicity
ensure the relevance of the results, whereas knowledge oriented
models are only relevant relative to previouly observed behaviour
or relative to a prior goal setting.

The classical conception of simplicity often implies homogeneity, a
small number of variables and a fixed structure. This concept of
simplicity leads to a global desciption.

However, simplicity is not a fixed concept. In last analysis simple
is what we conceive of as simple, and this depends on the tools we
have.

The tools we have today invite a new concept simplicity: one which
involves local, simple infomation processing -entities with varying
interactions, forming varying patterns. Models which are very
simple in this sense can generate very complex macro structures. In
order to perceive these macro structures we need knowledge-rich
classification type qualitative models of them. Thus, the course of
science seems about to turn around 180 degrees: Now that we can
formulate truly simple informatic models we need to model them in a
manner we originally modelled the universe, i.e. in terms of
"naive", knowledge rich, classification oriented, large scale
models. MICMAC modelling does exactly this: given a small scale,
local simple definition of a wuniverse, it generates models, at
multiple levels, which are progressively more knowledge
(classification) oriented. Again, these models can be validated in
terms of "it turns out that": However, now there are many universes
which can be compared.

Goal oriented modelling considers the structure of the universe as
a constraint for the attainment of the preconceived goal. In
contrast, in structure oriented modelling the structure of the
universe is used to recognise what is interesting to know and
learn. In fact without a structured universe knowing and learning
is not well defined. Only by creating many alternative possible
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universes (e.g. MIRROR worlds) and traveling the paths which are
opened up by them, can we enhance what can be known and pursued.
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GLOSSARY

DEMON : Actlvates its TIE when 1its TARGET event happens; is
generally generated by its TIE (typically a DWELLER, an
OBSERVER or a PATCH).

DODOM: dominance interaction for socioinformatic models

DWARF's : The basic structure recognising entities in MIRROR
universes; They hoard JEWELs and GEMs and can make tools
(possibly of tools...).

DWELLER: Spatially embedded locally defined autonomous entity in
MIRROR worlds.

GEM: hoarded and shaped by DWARFs; represents period of changing
structure which bridges a gap between JEWELs; can be used as
‘"interesting event’.

HOARD: ordered collection of JEWELs and GEMs.

Interesting Event: event which changes the structure of the
universe, l.e. redirects the universe from its ‘expected’
course of behaviour (expected on het basis of observed
behaviour in the previous fixed structure universe).

JEWEL: hoarded and shaped by DWARFsS; represents period of fixed
structure, punctuated by GEMs.

MICMAC modelling principle: model transformation by gradual
replacement of MICro entitles by MACro entities on the basis
of the observed behaviour. (Thus reducing the set of events to
"Interesting events’).

MIRROR modelling: Modelling methodology for creating artificial
universes (MIRROR worlds) consisting of autonomous entitiles
with variable interactions.

OBSERVER: most versatile of the output generating entities; tries
to represent only 'interesting’ features of the MIRROR world.

PATCH: homogeneous part of a SPACE; can be ‘active’, 1.e. change
its state autonomously.

RECORDER: simplest type of output generating entity; records
varliables and events explicitly defined in the model.

REPORTER: generates output on some predefined global property of
the MIRROR world which 1is however not explicitly represented
in the MIRROR world.

SKINNY: a specialisation of a DWELLER used to study spatial and
soclal 1interactions; has a SKINSPACE to represent its estimate
of other SKINNIES.

SKINSPACE: SPACE assoclated with a DWELLER (but not the space in
which it dwells) 1In which a partially independent world of
Interacting DWELLERS exist; used e.g. as mental space or as
parasite space.

SPACE: space in which DWELLERs dwell. (Can be 1,2,3,..D Euclidean
or graph structure).

SPACE-SPACE: SPACE in which the primary model entities dwell,
representing ‘real’ space.

WIZARD: entity which may 1initiate a 'reality change’'; it tries to
enhance the structure discovered by DWARFs and represented in
JEWELS .



