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MIRROR beyond MIRROR, Puddlesof LIFE

PRELUDE

We call our approach to Artificial Life MIRROR modeling to indicate that Artificial

Life should:

s Be “As large as life and twice as natural,”

a  “Reflect our reflections” on life rather than life itself,

® Form almost independent, partly overlayed, sometimes interacting “puddles”
which are represented at multiple levels of detail,

s Repeat simple structures,

s “Shape, unshape and reshape,” and

s Be interesting to observe.

Artificial Life, SFI Studies in the Sciences of Complexity,
Ed. C. Langton, Addison-Wesley Publishing Company, 1988 297
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1. BIOLOGICAL MODELING, BIOINFORMATICS AND
ARTIFICIAL LIFE

Artificial Life could mean many different things. In this paper, we delineate a class
of models, which in our opinion could profitably be termed “Artificial Life” models.
“Artificial” because they are not designed to be in close “one-to-one” correspon- -
dence with previously observed life forms; “life” because they expand our observable
universe with entities “which live their life” in which we can observe patterns nor-
mally preeminently associated with life. We sketch the position of such models
among other biological and bioinformatic models.

1.1 OUTPUT-ORIENTED VS. STRUCTURE-ORIENTED MODELS

In conventional biological models, one usually takes as starting point some more
or less well-described phenomenon, and tries to find a representation which repro-
duces this phenomenon. We call such an approach “output-oriented” modeling. An
alternative approach, which we call “structure-oriented modeling,” is to start with
an a priori-defined model structure and study the types of behavior it generates.
In the first approach, constraints may be (and usually are) added to the structure
of the model; in the latter case, ideas usually exist about the type of behavior it at
least should generate. Nevertheless, the two approaches are conceptually sufficiently
different to warrant the distinction.

For the purpose of bioinformatic research (i.e., for studying informatic processes

in biotic systems). we have emphasized the need for structure-oriented modeling!®16
because:

1. Bioinformatic processes are inherently “local,” and bioinformatic models should
be in terms of local information processing.

2. Our insight in local/global transformation is entirely insufficient to “predict”
the outcome of local rules; output-oriented modeling, therefore, is impractical,
and if tried, will usually lead to much too complicated models.

3. Local micro-interactions can generate a set of qualitatively different macrophe-
nomena. These phenomena would seem to be unrelated if studied at the macro
level only. Thus, in an output-oriented approach, we would probably construct

models for each of the phenomena separately, and fail to recognize their inter-
relationships.

4. It is not true that we “know” macro-level phenomena much better then micro
interactions.

Thus, in bioinformatic modeling, we define the structure of a universe, requiring
that the information processing of this universe is a “reasonable” representation
of the informatic processes in the system under consideration, and “observe™ the
ensuing macro behavior of the system; this behavior may or may not coincide with
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behavior previously observed in biotic systems. Observation of the model system
becomes the crucial, nontrivial part of modeling.}1:1%

“Artificial Life” models can belong to either class of models. In the output-
oriented approach, one has to set up some (partial) definition of “life” and gener-
ate systems which do satisfy this definition of life, possibly in a way structurally,
not only materially, quite different from the way biotic life does. In the structure-
oriented approach, one can set up information processing universes and study the
behavior. Both approaches were used in the pioneering work on cellular automata:
Von Neumann’s?® self-reproducing cellular automaton is clearly an output-oriented
model (and, consequently, turned out to be far more complex than necessary,324
whereas Ulam’s Cellular Auxology models3® are clearly structure-oriented models
(Ulam coined the term “imaginary physics”). Both approaches still flourish in cel-
lular automaton and related contexts. Qutput-oriented models, for example, are
cellular automaton models which are designed to “self-reproduce,”?* network mod-
els designed for recognizing certain types of patterns (e.g., symmetry groups3?)
and L-systems designed to resemble certain plant species.?!2¢ Structure-oriented
models are the studies on the the patterns generated by classes of cellular auto-
mata,$253%37 pnetworks®??3 or L-systems.” %33

In this paper we will focus on structure-oriented Artificial Life models: the
reasons mentioned above for bioinformatic models apply here as well. Moreover,
when generating artificial life 1t seems more interesting to generate and observe
new (lifelike but yet unknown) behavior patterns than to generate “more of the
same,” i.e., a prior: definable behavior patterns from new ingredients.

1.2 MODELS, PARADIGM SYSTEMS AND ARTIFICIAL LIFE

The shift we are presently experiencing from analytically treated models toward
models studied by simulation is much more profound than is usually acknowledged,
and has profound methodological (and ontological, if we are to make Artificial
Life) consequences. An important side effect of this shift from models allowing for
analytical solutions to models which are studied by simulation is that instead of
studying a class of model systems (i.e., the different parameter values and different
initial conditions), one studies just one, fully specified system at a time. This is, of
course, why analytical solutions are supposed to be more valuable than simulation
results. However, there are a number of reasons why this latter conclusion is not
necessarily correct:

1. The class of models studied in analytical solutions is shaped primarily by solv-
ability, and not by problem-oriented considerations, and its relevance therefore
can be limited.

2. Such a model selection is not at all an unbiased sample: this is forcefully il-
lustrated by the late recognition of the chaotic behavior of very many systems
which are simple generalizations of earlier studied models. Moreover, general-
izations are demanded by the object studied. For example, before 1970 many
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discretizations of the classical logistic-growth model were proposed for species
with discrete generations, all of which avoided chaotic behavior. Nevertheless,
such density-dependent growth models were criticized because of the absence
of severe fluctuations which were observed in such populations.

3. Some behavior patterns dnly occur in models which do not allow for general
“shortcuts;” their fate can only be resolved by letting a fully specified system
“live its life” (e.g., behavior patterns associated with universal computation).

4. Parameter values are just as important in representing some other svstem as
are structural properties and they are often better known.2

The usefulness of studying fully specified systems is evident when the model
is supposed to represent one particular other system(e.g., a particular lake). Such
“one-to-one” models are particularly jmportant in semi-engineering context (ecosys-
tem management, medicine, building airplanes), but are usually not the goal of
scientific modeling. Fully specified model systems then function as “paradigm sys-
tems,” 115 j e, they are specific examples of an almost always loosely circumscribed
class of systems. Such paradigm systems should be located at “interesting” points

within this class of systems. A paradigm system can derive its interest in several
wayvs:

1. It represents closely some other (“real world”) example, but is made up of
different ingredients.

2. It represents some sort of “average” of the class of systems, i.e., is located close
to the middle of the class of systems envisaged.

3. Itis a very simple (the most simple known so far) example of the class, i.e., is
located near the margin of the class of systems envisaged.

4. It lies clearly outside the class of systems but is related to it in an interesting

manner: for example, it is very similar to a paradigm system which does lie
within the class.

5. It exhibits unique features not known from any other representative of the class.

In fact. most scientific models also take the form of paradigm systems if param-
cter-independent solutions are sought: their structure and thereby the implicit pa-
rameters are paradigm-like. Simplicity (3 above) is very often the prime source of
interest. for which close similarity is readily sacrificed.

Artificial Life models are clearly paradigm systems: nothing can “live” without
being fully specified, and “life” is surely a loosely specified class of phenomena, if
abstracted from its physicochemical basis. Artificial Life models can be “interesting”
because of all the reasons mentioned above (maybe except 2, whose usefulness is
doubtful in any case when none of the other points are satisfied), although points
4 and 5. (i.c., those exhibiting hithercto unknown behavior) are of special interest
in this context, because these are often not recognized as interesting in “normal
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science.” Nevertheless, studying examples outside the known class of living systems
is very valuable for understanding life.

We conclude that “Artificial Life” models differ only gradually from other bioin-
formatic paradigm systems, and are indispensible in bioinformatic research. At
the beginning of modern science Bruno, having heard Galileos theories, concluded,
“Then there are many worlds like our own.” Now at the beginning of flexible media
to make paradigm systems, which once again revolutionizes science, we should con-
sider that we may be able to make many (artificial) worlds, some quite unlike our
own (“real”) world which may yet support a form of “life,” as worthy of observation
as the biotic (“real”) variety of life is.

2. MIRROR MODELING '
2.1 BASIC STRUCTURAL CHARACTERISTICS OF MIRROR WORLDS

In our opinion there are, apart from the structural requirements set by any partic-
ular problem, a number of structural requirements which should be satisfied in any
system in order to qualify as (structurally) lifelike (artificial or otherwise), although
systems may be behaviorally lifelike without satisfying them. MIRROR modeling
methodology is developed to make it easy to satisfy these requirements. They are
discussed in this section.

2.1.1 LOCAL DESCRIPTION The importance of local description is widely recog-
nized, and it is the main motivation for cellular automata-like formalisms. Nev-
ertheless, these formalisms do not realize a fully local description: implicit global
structure may be responsible for the observed behavior. Such implicit global factors

are, in particular, a global timing regime and a fixed network, which are discussed
in turn.

1. Global Timing Regime (Synchronicity). A number of authors have shown that
synchronicity generates global structure and that, therefore, cellular automata
cannot directly model certain processes, e.g., morphological developments® or
Ising systems,3” because unrealistic long-range correlations are introduced by
the synchronicity. Asynchronous versions may generate interesting macro struc-
tures, but for other local rules than their synchronous counterparts.?9:27:31
However, synchronicity changes what is “simple” and therefore profoundly in-
fluences our mapping of possible worlds. A local timing regime implies asyn-
chronicity, but does not introduce this in a global way: timing depends on local
circumstances, e.g., internal kinetics 343 or triggering by events.®~19 In MIR-
ROR modeling, a local timing regime is enforced: there is no global monitor
and entities either schedule their own next activity on a timing list (imple-
menting internal kinetics), are explicitly activated by other entities, or are im-
plicitly triggered by events through DEMONS, which are posted by themselves
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or other entities. The self-structuring properties of MIRROR worlds make use
of the local timing regime. In particular, when a (semi)invariant structure is
recognized, which has a predictable behavior until something special happens,
the initially explicitly happening but predictable events may be moved to the
“internal dynamics” of a new entity. This new entity replaces (temporari.y)
the set of entities involved in the invariant structure. Henceforward, only the
macroevents, l.e., the “something special” which changes invariant structures,
take place explicitly and are timed on the basis of the experience gathered
about the invariant structure when it was still explicitly simulated. We call

these macro events “interesting events,”51%14 interesting because they are not
predictable.

2. Global Interaction Structure (Fixed Network). In many modeling formalisms
which incorporate local dynamics, the interaction structure is either local but
fixed and uniform (e.g., cellular automata), or global (every entity can inter-
act with every other entity) and only quantitatively modifiable (e.g., (neural)
network models). This restricts the choice of entities severely.’® In the case
of cellular automata, the fixed local structure enforces that the information
processing units represent patches of space instead of biological information
processing entities.!? We think the latter should be the unit of description in
bioinformatic models and also in (some) artificial life models; we call such mod-
els “individual oriented” (see section 2.1.2). In the case of network models. it
implies the preexistence of all cells and interconnections, which is only par-
tially true for neural systems and is not only unrealistic, but leads to begging
the question in evolving systems. Thus, models of evolving systems should in-
clude the evolution of interaction structure. This is also true for models which
simply involve a variable number of information processing units. We call such
models “variable structure models” (compare references % see section 2.1.3.).

2.1.2 INDIVIDUAL-ORIENTED MODELS Although it may be an ultimate goal to un-

derstand “life” as a property (state) of space/time (as is attempted in cellular

automata models; see 2.1.1), it may be more directly interesting to understand
how complex biological information-processing structures emerge in assemblies of
simpler biological information processing units. Moreover, we think that the pro-
cess of individualizing (and deindividualizing) is fundamental in lifelike processes.
and therefore should be fundamental in (artificial) life models. Stated more sim-
ply, if “life” is generated as a property of space/time (in a manner described by

Langton?®), it still seems to nced us to recognize it as alive: if complex individuals

are generated from more simple ones, they themselves may recognize themselves as

living individuals in space/time.

Thus, according to the first point, the basic entities in MIRROR models are
“individuals,” possessing an (extendable) behavioral repertoire. These individuals
live in spaces. Their behavioral repertoire includes sensing their local environment,
changing the environment locally, and changing their own position in the space
(i.e., changing what constitutes their local environment). The space in which the
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individuals live can take the form of (non-sychronized) cellular automata. The state
of the cells of the cellular automata can include, apart from regular state variables
of the “patches” (cells), the individuals which inhabit it. Thus, cellular automata
are incorporated as a MIRROR world without individuals (as yet).

MIRROR worlds can contain separate structure-recognizing entities
(DWARFs). DWARFSs recognize invariant structures, e.g., recognize that a certain
set of individuals interact exclusively among each other. As a still primitive form of
individualizing (2 and 3 above), DWARFSs can replace such invariant structure with
a new individual, whose behavioral repertoire corresponds to the behavior of the
invariant structure it replaces (incorporates). However, certain events (“interesting
events,” see 1.1.1) can disrupt the invariance, and if such events occur, the new
individual is again replaced by the set of interacting individuals whose behavior it
incorporates, i.e., deindividualizing occurs.!0:16

2.1.3 VARIABLE STRUCTURE MODéLS In order to be able to generate structure in
a non-trivial way, (artificial) life models should be variable structured. Engaging
in an interaction is part of the behavioral repertoire of an individual. Howeyer, in

order to interact, it should “know” (sense, have a pointer to) the other individual.
In MIRROR worlds, such knowledge is obtained by

1. Spatial Embedding. The individuals live in spaces. Through this spatial embed-
ding they can select potential interaction partners (those that are “nearby”).
Who is nearby depends, of course, on the behavior of many entities and on
the topology of the space. Spatial embedding is the most important structure-
generating device in MIRROR models. MIRROR worlds typically contain sev-
eral spaces in which individuals live, and the above applies to each of them.
Primarily there is “SPACE SPACE,” i.c., the space in which the “organisms”
(or cells or molecules) move about. Obviously nearness is very important for
interaction among them. There are a varicty of other represent national spaces,
most importantly SKIN SPACES: with cach individual a space may be associ-
ated which contains its representation of its world. It is inhabited by individu-
als which interact in ways similar to that of space space (see section 3.2). The
topology of the latter spaces, of course, can be non-euclidean.

2. Acquaintance. The pointer to an individual (once obtained by spatial proxim-
ity) can be stored in its memory.

3. Ancestry Based. Such stored acquaintances may be passed on to the “oflspring.”
Note that this is the way variable structures are realized in L-systems.

4. Pattern Based. Interactions are based on pattern similarity. This can be seen
as a special case of spatial embedding. without movement through space. It is
used by Farmer et al.® and in many message passing algorithms.

An important side eflect of using variable structure models is that at all times
the interaction structure can be minimized. Thus, relevant interactions can be more
casily observed. Observation of the relevant interactions, both within the model and
by us, is what life and modeling is about.
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2.2 ENTITIES OF MIRROR WORLDS

MIRROR worlds are not only characterized by the types of interaction and control
structure as discussed in the previous section, but also by the (proto)types of enti-
ties which forra the world. These prototype entities are an important heuristic for
shaping models.

MIRROR worlds consist minimally of a SPACE, subdivided in PATCH(es), in
which DWELLERSs live. DWELLERs posses a set of sensors with which they obtain
information of their immediate surroundings, and can perform actions on the basis
of this information. The sensors include those which react on signals created by
the environment on an action of a DWELLER, e.g., an environment may generate
“cracks” when a certain type of DWELLER moves, which warns other DWELLERs
of its approach. These actions include changing position in space, changing local
features of the space or of DWELLERS they meet, and creating new DWELLERs
of the same type as itself (reproduétion) or of other space inhabiting entities (like
PATHs or ODOUR)s.

A MIRROR world often consists of several SPACES inhabited by DWELLERs.
These SPACEs are largely independent, but are interrelated via DWELLERs and
their behavior: with each DWELLER, a SPACE may be associated (its SKIN-
SPACE) in which DWELLERs dwell. The behavior of the DWELLER can be depen-
dent on the configuration of DWELLERSs in its SKINSPACE (which it “observes”)
and thereby influences the configuration of DWELLERs in the SKINSPACE of
other DWELLERs. An extremely simple example of the use of such multiple spaces
1s given In section 3 and Figure 1. We think, however, that more complex imple-
mentations of this structure may go a long way to creating the multiple, almost
independent “puddles” which make biotic life fascinating.

Apart from this multiple level “real” world, MIRROR universes incorporate a
“shadow world.” This shadow world is also defined in terms of locally interacting in-
dividuals, although “local™ may be defined in a way quite different from the “real”
world. Entities of the shadow world include DEMONs. DWARFs, OBSERVERs
and WIZARDs 5111518 DEMONS activate entities on certain clues: they are ex-
tensively used by all types of entities of the MIRROR world (including the shadow
world entities) to "notice” relevant events; also the above-mentioned “cracks” are
generated by a specialized DEMON (CRACKER).

The other shadow world entities are more specialized: DWARFSs detect invari-
ant relations (see Hogeweg and Hesper!®!® for an explanation of how they go about
doing it). OBSERVERSs find (e.g., by nonsupervised learning methods) interesting
patterns in MIRROR worlds, and WIZARDs may change worlds, e.g., to maximize
or minimize a certain type of invariant relation. Although presently DWARFs, OB-
SERVERs and WIZARDs are mainly used to generate multiple representations of
the MIRROR world to the user. they are intended to be used by the entities of the
“real” world (and the shadow world itself) for the same purpose.



P. Hogeweg 305

2.3 NOTES ON THE [MPLEMENTATION OF MIRROR

The current implementation of our ideas on MIRROR modeling is called MIRSYS,
and runs on the XEROX-1186 INTERLISP-D workstation.

2.3.1 INDIVIDUALS The individuals are (parallel) invocations of INTERLISP func-
tions. Using the Spaghetti stack facilities (and downloading whenever possible), the
entities exist simultaneously in their respective stack environments. An individual
is represented in the system by an atom whose value is the stack pointer. Typically
a DWELLER has access directly to its own stack environment and further up to
the stack environment of the space in which it lives. Thus it inherits the space-
defining properties which determine its sensing and acting on its environment (e.g.,
the same DWELLER can live in a two- or three-dimensional environment). More-
over, an entity can examine (and initiate functions in) the stack environment of its
interaction partners. g

2.3.2 ENTITY-DEFINING FUNCTIONS The function defining a type of entity can take
any form: for example, it can be a regular function or it can be “rule based.” It can
be modified by adding rules, or by using the advice facilities of INTERLISP. The
behavior of the individuals, of course, is modified all the time by the modification
of the information used by the function. Moreover, individuals typically “extend”
themselves by generating other entities, in particular DEMONs which are attached
to certain variables or procedures of other individuals and “revive” the individual
when this variable is accessed or changed or the procedure is called (by certain
entities and/or with certain parameters).

2.3.3 REVIVAL OF INDIVIDUALS Control is passed from one individual to the next
by explicit REVIVALS, DEMON-based REVIVALS, and time-based REVIVALS.
Revivals pass control to the stack pointer representing the revived individual and
flag the cause of revival. In explicit revivals, this flag refers to the individual doing
the revival and possibly any “message” it cares to send, in DENMON-based revivals
the event on which it was activated (DEMONs themselves are transparent for the
other entities, although they can add “messsages” to further specify the event and
can delay the activation following the event) and in time-based REVIVALs just
time. Time-based revivals take place whenever nothing else is happening: the time
then proceeds to the time at which some event is scheduled.

2.3.4 IMPLEMENTATION OF DEMONS The DEMONSs are placed in property lists
of individuals under the name of the variable or procedure which they “haunt.”
The basic MIRSYS procedures check the property lists of the individuals forming
their current stack environment for property names corresponding to their param-
eters and revive the DEMONSs stored there. For example, the MIRSYS function
SETENYV sets a variable in some explicitly referenced individual (stack environ-
ment) and, if the value of the variable is indeed changed, revives the DEMONS
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in the property <variable name> of the referenced individual as well as the indi-
viduals (e.g., its SPACE) in whose stack environment it occurs. Thus, DEMONs
can haunt events at several levels of generality (e.g., eating of a specific individ-
ual, eating of any individual in a SPACE, etc.). Standard INTERLISP functions
can also be “haunted” without being accessed via the MIRSYS local-function call
functions: if so, these functions are automatically advised to check for DEMONSs in
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FIGURE 1 Interactive facilities of MIRSYS as functioning in the SKINNY world.
MIRROR window (lower left) gives access to all entities of the MIRROR world through
a hierarchical popup menu: all types of entities, all individuals of the clicked type, all
variables of the individual clicked. Interactive window (middle left): By clicking
DOENV-ME user control is passed to the stack environment of the clicked individual
and can “do” things,e.g., move forward (returns the new coordinates and generates as
side-effects the moving of the icon representing the individual, etc.) and inspect the
world from the viewpoint of the clicked individual, e.g., inspect the world for nearby
SKINNIES (returns the list). ICON popup menu (upper right): the same interactive facil-
ities are available when clicking an icon representing an individual; here a SKINREP is
clicked, i.e., an individual representing a SKINNY in mental space.
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the property <function name> of the individuals in its own stack environment.
DEMONSs typically check for some conditions before passing on the revival to the
individual tied to it (minimally it checks for its existence, if it does not exist anymore
the DEMON kills itself).

2.3.5 GENERATION OF OUTPUT All the generation of “output” is done by special-
ized entities (RECORDERS, REPORTERS and OBSERVERSs), which are activated
by the DEMON mechanism: in this way the model entities are not contaminated
with output generation and a very flexible output-generating structure is estab-
lished: any collection of information-gathering entities can be let loose in the world.
RECORDERs are the simplest of these entities, they gather statistics on certain
types of events and display them in real time, periodically or on user request.
REPORTERS and OBSERVERs are progressively more versatile: REPORTERs
report on properties of the system not explicitly represented in the model formula-
tion but which can be gathered fairly easily, whereas OBSERVERs use their own
“judgment” on interesting phenomena and on when (and how) to tell about them.
The graphics representation of the various spaces (see Figures 1 and 2) is also done
in this way: whenever an individual moves in a space, a DEMON activates a “DIS-
PLAY PATH” entity which moves an icon representing the individual in the display
space.

2.3.6 INTERACTIVE FACILITIES MIRSYS makes full use of the INTERLISP-D
graphics and interactive facilities (see Figures 1 and 2). At any time, a MIRROR
universe can be interrupted and examined at any level of detail, can be changed
(by changing the values of variables of individuals, by adding new individuals to
the universe. or by changing the definition of (types of) entities) and subsequently
can continue its operation. For example, a standard MIRROR window gives. via a
hierarchical pop-up menu, access to all entities in the MIRROR world (Figure 1):
all types of entities (i.e., entities being defined by a specific function). all individuals
of that type, and all local variables of those individuals. The values of cach of these
can be displayed and changed by mouse clicking (and typing the new value). More-
over, by clicking the DOENYV box, user control is passed to the stack environment
of the specified individual; the user then can view the world from the viewpoint
of the entity. e.g., by typing (NEARBY SKINNIES), a list of nearby SKINNIES
being considered by the “possessed” individual is displayed. The user can also make
the individual do things, e.g., by typing: (FORWARD 1), the possessed individual
will move forward a unit length. This may cause several DEMONs to be activated:
for example. a DEMON tied to the DISPLAY-PATH entity mentioned above, so
that the icon representing the possessed individual will move. and the CRACKER
which activates possibly other individuals who begin to fight with the individual
possessed by the user (etc.). The same interactive facilities are available by directly
clicking into an icon representing an entity in a display space.
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3. FROM BIOINFORMATIC MODELS TO ARTIFICIAL LIFE, AN

EXAMPLE; SPATIAL AND SOCIAL STRUCTURE FROM LOCAL
INTERACTIONS

Our bioinformatic research on the emergence of social structures due to pairwise
interactions between initially identical individuals!?13:15 j]lustrates the use of sev-
eral paradigm systems to map a set of behavior patterns found in a large variety of
biotic systems. Some of these paradigm systems proved to represent the observed
behavior of certain animals closely whereas others were never intended to do so, but
were chosen so as to be representative for certain basic socioinformatic processes.
Such “artificial life” models, apart from being interesting in themselves, generated
the knowledge needed to attempt to construct paradigm systems for creating spe-
cific behavior patterns. In other words, this research illustrates the concerted use
of models and artificial life models in bioinformatic research.

3.1 A MODEL OF BUMBLEBEES: A SOCIALLY REGULATED “CLOCK?”

A pattern analysis study on the interactions of live bumblebees has shown that
the workers in bumblcbee colonies can be subdivided into two groups: “common
workers” and “elite workers."!® Once a worker has entered the elite, she remains
in it until the end of the season when the queen is killed or kicked off the nest.
After that, she will lay unfertilized (drone) eggs. We set up a paradigm system
to find the requirements for the formation of the two types of workers under the
assumption that all workers are identical when hatching.!?!3 To this end, we set
up a MIRROR world consisting of a nest space in which BUMBLEs dwell. The
behavior of the BUMBLESs was derived from:

1. The known population dynamic properties of bumblebees (i.e., development
time of eggs, larvae. pupac)

2. The TODO principle. ie., the BUMBLE's do what there is to do, not what
they “intend” to do. Thus, if an adult BUMBLE meets a larval BUMBLE, it
feeds it; if it meets a pupae of the right age, it starts building an eggeell; etc.

3. All social (i.c.. non-maintenance) interactions are of the DODOM type.
DODOM interactions involve three stages: (1) displaying/observing mutual
dominance; (2) win/lose. determined on the basis of the mutual dominance,
local factors and chance; (3) updating of the relative dominance based on 1
and 2 in such a way that expected outcomes reinforce the relative dominance
only slightly, whereas unexpected outcomes give rise to a relatively large change
in the dominance. Thus a damped positive feedback ensues.

4. A criterion of viability: is there enough food made available. This criterion is
used to adjust unknown parameters.
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MENTAL SPACES OF THE 7 SKINNIES

o !
i N west

FIGURE 2 Display of spatial and social structure in a MIRROR world inhabited by
SKINNIES. SPACE-SPACE(lower right): space in which the SKINNIES move about and
interact. MENTAL SPACES (top row): relative dominances of the SKINNIES as per-
ceived by each of them. SOCIAL SPACE (hierarchy) (middle left): Plot of the largest
two principal components of the similarities of SKINNIES as measured by the estimate
of the others. Corresponds 1o the hierarchy. SOCIAL SPACE (world view) (lower left):
like the hierarchy, but based on their own estimate of the others: represents average
spatial structure. The same icon is used in all spaces to represent the same individual.

It turns out that the resulting (simple) structure is sufficient to generate the
stable class structure. provided that the nest space is subdivided into a CENTER
(where the brood is and all interactions take place) and a PERIPHERY where
inactive (common) workers dose part of the time. This, indeed, seems to be the
case in live nests. Moreover, it turns out that the model generates a number of
other phenomena observed in live bumblebee nests, most notably: (1) the queen
was killed at the end of the season: (2) her departure resulted in chaos in the nest;
and (3) the time at which the queen was killed was a stable, sclf-regulated property
of the social structure which remained the same for a wide range of growth rates of
the nest (a variable parameter in live nests). This time of departure of the queen
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is crucial for the “fitness” of the colony, as only afterwards generative offspring
are reared. Interestingly, and counterintuitively, when this socially regulated clock
breaks down because of stagnant growth of the nest, the small number of workers
do kill the queen too early—not too late as a simple “force of numbers” argument
would suggest. This is observed in live nests as well, and was used as an argument
against a social influence of the timing of the “worker rebellion.”?

Thus, the MIRROR world provided a fairly complete integrated view on the
social structure of bumblebee colonies, although its initial goal had been much more
limited. Moreover, it leads us to the hypothesis that a variety of self-regulating social
structures which seem “adaptive” can be generated by the combination of TODO
and DODOM. This implies that a change in the TODO (maintenance requirements,
overpopulation, etc.) results automatically in a change in social structure. Thus,
social structure is not an independent parameter which is optimized to fit certain
circumstances (compare Oster and ‘Wilson?®), but an (emergent) property of its

circumstances. Also intriguing was the important influence of spatial structure on
social structure and vice versa.

3.2 AN ARTIFICIAL LIFE MODEL: THE CONCORDANCY BETWEEN
SPATIAL AND SOCIAL STRUCTURE

The latter conclusions were further investigated in a MIRROR world which was
not designed to represent any particular species but did incorporate the same type
of interactions in a continuous spatial environment. The D\WWELLERs of this MIR-
ROR world we called SKINNIES, to indicate that (1) they are the most meagre
implementation of such a spatial TODO/DODOM structure and (2) the individ-
uals know each other personally, i.e., have a representation of each other in their
SKINSPACE (mental space).

Figure 2 summarizes the model as well as some model results. SKINNIES live
in small groups in SPACE-SPACE (lower right window in Figure 2). If they meet an
other SKINNY(or are disturbed by one in their neighborhood). they either initiate
an overt DODOM interaction or fly. The choice depends on a DODOM interaction in
their own SKINSPACE (which is represented in the upper left of Figure 2) in which
their representation of self and interaction partner interact. \When such an interac-
tion is lost, they fly in SPACE-SPACE; otherwise, they DODOM in SPACE-SPACE,
displaying their dominance estimate according to their SKINSPACE. Notwithstand-
ing these interactions, they are inherently “social,” i.e., when no other SKINNY is
close enough, they will move towards the nearest (group of) SKINNIES.

This straightforward, rather simple-minded, interaction structure generates an
interesting social structure: SKINNIES tend to form faithful pairs or small groups,
which meet once in a while. On meeting a struggle ensues. after which it is most
likely that the original pairings re-emerge intact. Moreover. it appears that for
groups larger than two, the most dominant SKINNY tends to be in the middle
and to interact with several submissive SKINNIES. whereas the latter ones only
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interact with the “boss.” This interaction structure was not at all expected or even
preconceived, and was only observed with the aid of DWARFs.

The lower left corner of Figure 2 gives two “social spaces” in which the group
of SKINNIES live. The upper one is a representation of the hierarchy, the most
dominant SKINNIES to the right. There is no absolute measure of hierarchy, but
the ordering agrees well with all pairwise dominance relationships. The space is
constructed from the estimate that the SKINNIES have of each other. More specif-
ically, it optimally represents the similarity of the SKINNIES as viewed by other
SKINNIES. Hierarchies are very common in groups of animals. The lower social
space compares the “world view” of the SKINNIES, i.e., it optimally represents the
similarity of the SKINNIES with respect to their estimate of the other SKINNIES.
Interestingly, this does not correspond to the inverse analysis which represents the
well-known social-concepts hierarchy; instead it gives the dominant SKINNIES a
central position. In fact, it represents'the average spatial structure of the group very
well: the more dominant SKINNIES are located in SPACE-SPACE in the middle of
larger groups and are together. Although this is not so easily detectable, it appears
that such a spatial/social structure exists in many groups: the present research
shows that this relationship between social and spatial structure is an intimate one
(both are caused by the other and generated by the other). This is indeed reflected
in our language: we are “close” to each other or “remote.”

We conclude that, by studying an artificial world of SKINNIES, we can dig out
relationships, which otherwise are obscured by all other things that are going on, but
which nevertheless are an important force in shaping many worlds. We also conclude
that one basic interaction structure, like the DODONM mechanism, can lead to a
great variety of self-regulating macro structures depending on the “environment” in
which it occurs. In particular, we conjecture that the DODOM/TODO mechanisms
are (co)responsible for the variety of social structures observed in groups of animals.
The more gencral implications of the occurrence of versatile, regulating, emerging
structures in biotic systems are discussed in the following section.

4. SELF-STRUCTURING, ADAPTATION AND EVOLUTION

The above-described MIRROR worlds have non-trivial self-structuring properties:
new, unexpected macrostructures emerge. These macrostructures are not only rec-
ognized by us, but are also recognized by the model. Recognition by the model can
be explicit—OBSERVERs and DWARFSs generate a representation of the macro-
structure—or implicit—the emergence of the macrostructures is crucial for other
properties of the model. For example, the elite group and the common worker
group in the bumblebee world are recognized as such by the OBSERVERs, and
their formation brings about the switch from worker offspring to generative off-
spring. Likewise the “friendship pairs” in the SKINNY world are recognized by
DWARFs and determine the outcome of interactions and the spatial structure if
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pairs meet. The emerging structures represent temporary (semi)invariant relations:
they remain embedded in the variable structure world and can (and do) evolve and
dissolve. It is this dynamic aspect of the emerging structures which leads to “adap-
tive” behavior in the MIRROR worlds discussed. The behavior is adaptive in the
sense that under a change of circumstances, the “shape” of the emerging structure
changes so as to be “optimal” or at least “sufficient” in these circumstances to bring
about some other property (or emerging structure) in the world.

This is clearly demonstrated in the bumblebee world: when a change of cir-
cumstances leads to a higher growth rate of the nest (in this case, the change is
an external parameter, but a change of circumstances, of course, can be due also
to a change in other emerging structures), the difference between elite workers and
common workers becomes less pronounced with respect to the behavior of the in-
dividuals and with respect to membership. Conversely when the growth rate of
the nest stagnates, a very pronounced small elite group is formed. By this mecha-
nism, the switch between worker offspring and generative oflspring are “optimally”
timed. For a large range of “normal” growth rates, the timing is set to the end of
the season: under the assumption of ergonomic constraints, in this way a maximum
number of generative offspring is reared because the exponential growth phase is
maintained as long as worker offspring are produced.?® The earlier switch in the case
of stagnant nest growth seems “optimal” as well: if there is no growth of worker
force anymore, why wait for the end of the season?

Clearly, the fitness of a bumblebee colony depends crucially on the emerging
structure. There is no concept in the model formulation akin to a switch from
worker to generative offspring, and even less to a timing of such a switch. In other
words. there is nothing like a gene representing this switch (or its timing) which by
random mutation and selection is set to a sufficiently correct (or optimal) value.
Instead, the combination of the DODOM interaction structure and the maintenance
characteristics of a bumblebee nest creates the elite structure which, in combination
with some other beliavioral parameters (e.g., the fact that the queen tries to prevent
workers from rearing new queens and laying (drone) eggs of their own), generates
an adequate regulation of the generation of generative offspring. The point is not
only that the switch is regulated by multiple “genes” and that each of these “genes”
1s involved in other (crucial) processes, but also that:

1. It is the regulation of the timing rather than the timing itself which is the
interesting feature.

2. An emerging structure (which is likely to be self-regulating) can be easily ex-
ploited for a variety of “purposes” (fithess criteria) simultaneously.

3. Emergent structures determine what can be used as crucial fitness criteria (i.e.,
if no elite structure should arise from DODOM and maintenance, the ergonomic
optimality would not be reached by a switch but along a quite different route,
e.g., via physiological adaptation to, say, a multiannual colony structure).
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In feedback mechanisms, cause and effect, of course, are distinguished with
respect to time scale only (if at all). Nevertheless, the DODOM mechanism reverses
what we would normally see as cause and effect. An individual does not primarily
win because it is dominant but, rather, because it happens to win it becomes
dominant (and therefore wins, etc.). Thus, a bumblebee becomes a member of the
elite because she happens to interact with elite workers, therefore, happens to win
once in a while from elite workers and, therefore, becomes elite and interacts with
elite workers. Likewise SKINNIES happen to be near each other in space, therefore
come to “know” each other well, and therefore will remain together in space.

A similar reversal is suggested by the above observations for evolutionary pro-
cesses. A property is not selected because it has a high fitness value, but, because
of the set of available properties, a semi-invariant structure emerges and these
semi-invariant structures create new fitness dimensions, which can be optimized by
adjustment of available properties. This slight change of viewpoint has a number
of “nice” side effects; for example:’

1. No generatlio spontanac. Conventional evolutionary theory shuffles the interest-
ing processes behind the curtain of unanalyzed (random) events: properties are
created by mutation and only their selection is studied. The shift in viewpoint
can open this curtain a little bit through studying conditions for the emergence
of (semi)invariant relations and their exploitation.

N

“Arrow of complexity.” Such a process may create an “arrow of complexity,” in-
stead of the “arrow of efficiency” created by conventional evolutionary concepts.
This is because “self-sufficient” properties cannot keep up their self-sufficiency
when (part of) their function is fulfilled by an emerging structure which is
self-regulating and/or under the protection of some additional selective con-
straint. Indeed, the molecular record of evolution shows that conserved sites
often have at least a dual function (e.g., the conserved sites in tRNA function
in transcription as well as in translation).!®

The great challenge for Artificial Life models is to obtain insight in the forma-
tion of self-regulating emergent structures and the landscape they create, rather
than to try to create entities which evolve in externally supplied landscapes. If we
will meet this challenge, our models may be caught in the arrow of complexity; if so,
maybe the time will come when these models become more interesting to observe
than life itself, and they might be observing us. If so, we will truly have: MIRROR
bevond MIRROR, Puddles of LIFE.
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