

RSA and LR formation

RSA arises from repeated LR root formation

What determines where new LRs formed?

Roots develop through sequence of stages; What controls these?

Modeling tissue layout

Modeling gene expression

Cell-level ODE computations

Multistability Bifurcations Wave patterns

Modeling auxin dynamics

Grid-level PDE computations

Very stiff \rightarrow ADI integration

р

d

İ.

e D

- $\frac{\delta \operatorname{auxin}_{int}}{\delta t} = p d * \operatorname{auxin}_{int} + i * \operatorname{auxin}_{ext} e * \operatorname{auxin}_{int} + D * \frac{\delta^2 \operatorname{auxin}_{int}}{\delta x^2}$
 - production (in cells) degradation (in cells) influx (cell wall -> cell)
 - efflux (cell -> cell wall)
 - diffusion (in cells, in cell wall)

Specific efflux transporter layout

PIN distribution map

auxin distribution map

LR priming

Prepatterning of competent sites

Prebranch

LR

site

Moreno-Risueno, 2010

Temporal oscillations in auxin (response) & expression of many genes

Xuan et al., 2015

Through growth temporal oscillations becomes spatial pattern of competent sites

LR priming

Prepatterning occurs inside vasculature

New roots have to emerge from inside

parent root

Orman-Ligeza,2013

Hypothesis:

Combination of growth & auxin transport

Emergent auxin oscillations

Thea v/d Berg

Oscillations require a functional reflux loop

Reflux loop generates "auxin loading zone" at shootward end of the meristem

Oscillations require growth of vasculature and pericycle

Growth in primed tissues necessary

Cell that arrives largest at loading zone becomes primed: Largest auxine loading potential

Growth produces periodic variations in cell size

Repeated generation of large-small cell pairs:

large cell: entered TZ just before next division small cell: next cell entering TZ just after division

amplifies size differences

Small cell enhances growth & loading time large cell

Periodic cell size variations also observed experimentally С 10.8 169 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 8 9 Time [h]

Dividing group of cells

Last cell of a dividing group of cells

Adapted from: Von Wangenheim *et al.*, Live tracking of moving samples in confocal microscopy for vertically grown roots, *Elife (2017)*

Even narrower → higher peaks

pH lower: more background influx → higher peaks

Division rate drives priming frequency

Meristem size determines density

Experimental data: Inverse relation MR length and LR density

Two sides of the same coin?

Vd Berg et al. BioRxiv 2018

Growing new roots

How to initiate,

bootstrap,

grow

& tame new meristems?

 $\frac{dA}{dt} = pS - dA$ $A = \frac{pS}{d}$

Growing new roots

How to initiate,

bootstrap,

grow

& tame new meristems?

Bistability, A=0 or A>0 eq.

Growing new roots

How to initiate,

bootstrap,

grow

& tame new meristems?

Special requirements on the brake!

- delay ?
- spatial domain?
- constrained?

Auxin-Cytokinin crosstalk

Not very insightfull.....

Auxins interesting partner in crime: Plethoras

An early brake controlling PLTs

Brake targets PLT production directly

Influences growth rate

A late brake controlling auxin

Brake targets PLTs indirect via auxins

As auxins travel this covers distance

Delay on brake Brake on brake

Conclusions

Periodic cell size differences and auxin transport generate oscillatory lateral root priming

- \rightarrow importance of growth dynamics
- \rightarrow importance of size, surface/volume etc

Incoherent FFL between auxin, PLTs and CK enables activation of own brake yet keeping it at a distance

In late stages an indirect brake on PLT is more effective due to localised PLT production and extended PLT gradient

Brake requires its own brake for stability

Questions?

UU Comp. Bio group

Thea vd Berg

Jaap Rutten

Joana Teixeira-Santos

Daniel Weise

Collaborators

Ben Scheres, Viola Willemsen, Kavya Yalamanchili Sabrina Sabatini Peter Doerner Christian Hardtke Ronald Pierik

Christa Testerink

PhD Vacancy!

k.h.w.j.tentusscher@uu.nl

Funding:

NWO – Vidi NWO – Building blocks of Life NWO/TTW - PIP

Oscillations require sufficien auxin availability

Location of auxin production not relevant

Consistent with IBA mutants having less LRs: reduced priming success

Oscillations require minimal lateral root cap size

Prediction that fez mutants have no/hardly priming

Oscillations are independent of precise growth dynamics

25

10

30

Division rate drives priming frequency ; not always 1 to 1

