By-passing Immunization
 Human Antibodies from V-gene Libraries Displayed on Phage

James D. Marks ${ }^{1}$, Hennie R. Hoogenboom ${ }^{1}$, Timothy P. Bonnert ${ }^{1}$ John McCafferty ${ }^{3}$, Andrew D. Griffiths ${ }^{1}$ and Greg Winter ${ }^{1,2} \dagger$
${ }^{1}$ MRC Centre for Protein Engineering and
${ }^{2}$ MRC Laboratory of Molecular Biology Hills Road, Cambridge CB2 2QH, U.K.
${ }^{3}$ Cambridge Antibody Technology Ltd
Daly Research Laboratories
Babraham Hall, Cambridge CB2 4AT, U.K.

(Received 6 September 1991; accepted 27 September 1991)

Abstract

We have mimicked features of immune selection to make human antibodies in bacteria. Diverse libraries of immunoglobulin heavy (V_{H}) and light (V_{κ} and V_{λ}) chain variable (V) genes were prepared from peripheral blood lymphocytes (PBLs) of unimmunized donors by polymerase chain reaction (PCR) amplification. Genes encoding single chain Fv fragments were made by randomly combining heavy and light chain V-genes using PCR, and the combinatorial library ($>10^{7}$ members) cloned for display on the surface of a phage. Rare phage with "antigen-binding" activities were selected by four rounds of growth and panning with "antigen" (turkey egg-white lysozyme (TEL) or bovine serum albumin) or "hapten" (2-phenyloxazol-5-one (phOx)), and the encoding heavy and light chain genes were sequenced. The V-genes were human with some nearly identical to known germ-line V-genes, while others were more heavily mutated. Soluble antibody fragments were prepared and shown to bind specifically to antigen or hapten and with good affinities, K_{a} (TEL) $=10^{7} \mathrm{~m}^{-1} ; K_{\mathrm{a}}(\mathrm{phOx})=2 \times 10^{6} \mathrm{~m}^{-1}$. Isolation of higher-affinity fragments may require the use of larger primary libraries or the construction of secondary libraries from the binders. Nevertheless, our results suggest that a single large phage display library can be used to isolate human antibodies against any antigen, by-passing both hybridoma technology and immunization.

Keywords: filamentous phage; human antibodies; combinatorial libraries

1. Introduction

Over the last century animal antiserum, and more recently rodent monoclonal antibodies, have been used clinically to neutralize toxins, and to treat bacterial and viral infections. In the future the specific recognition of human cell-surface markers

[^0]by antibody fragments should enable functional manipulations of subsets of immuno-competent cells in the fields of, for example, autoimmunity, transplantation, and the inhibition of cell adhesion and of cytokine-stimulated cell proliferation. However, the use of animal antibody can lead to an antiglobulin response and hypersensitivity reactions. Ideally human monoclonal antibodies would be used, but it is difficult to make them. Not only are peripheral blood lymphocytes (PBLs \ddagger) a poor source of the blast cells that are actively involved in the immune response, but it is difficult to immortalize them. The use of mouse myeloma lines as fusion partners for human B-cells leads to a preferential loss of human chromosomes and instability of the hybrids, and Epstein Barr virus infection of B-cells also tends to
produce unstable (IgM) lines with poor antigen affinity (for a review and references, see Winter \& Milstein (1991)).

However, there are other ways of tapping the antibody repertoire of immunized humans or animals. Instead of immortalizing B-cells for production of monoclonal antibodies, the antibody heavy and light chain V-genes are immortalized by gene technology, and antibodies or fragments expressed in mammalian cells, yeast or bacteria. For example, recombinant antibodies were rescued from hybridomas by PCR amplification of the V-genes with "universal" primers, and cloning the genes into vectors for expression of complete antibodies (Orlandi et al., 1989). In principle this technique could be extended to the construction of antibodies from the V-genes of single B-cells, thereby bypassing hybridoma technology (Orlandi et al., 1989; Larrick et al., 1989). Alternatively, libraries of V-genes have been used to express soluble antibody fragments, which are then screened for antigenbinding activities (Ward et al., 1989; Huse et al., 1989; Caton \& Koprowski, 1990; Mullinax et al., 1990; Persson et al., 1991). For example, from a donor immunized with tetanus toxoid, V-genes from the mRNA of 10^{8} human PBLs were combined at random in bacteriophage lambda, so scrambling the original heavy and light chain pairings. When the combinatorial library (10^{7} members) was expressed in bacteria and 12,000 plaques were screened on nitrocellulose filters for binding to toxoid, 10 binders were found (Mullinax et al., 1990). Thus, human antibodies can be made by filter screening of combinatorial libraries from immunized donors
B_{y} contrast we have avoided the screening of large numbers of individual clones on filters by mimicking features of immune selection (Milstein. 1990; McCafferty et al., 1990; Winter \& Milstein, 1991). In the immune system, diverse combinatorial libraries of antibodies are displayed on the surface of B-cells, and specific recognition with antigen triggers cell proliferation and differentiation into anti-body-secreting or memory pathways. We have displayed (Smith, 1985; Parmley \& Smith, 1988) antibody fragments on the surface of filamentous bacteriophage by fusion to a minor coat protein at the tip of the phage, the gene 3 protein (g3p) (McCafferty et al., 1990). Phage encoding antibody fragments with binding activities were selected from those encoding non-binders by affinity chromatography. By rounds of growth and selection, rare binders were selected, with an enrichment of one in 10^{3} after one round of panning, and one in 10^{6} after two rounds (McCafferty et al., 1990). Antibody fragments can be displayed as fusions with $g 3 p$ as single polypeptide chains in which the heavy and light chain variable domains are linked by a polypeptide spacer (single chain Fv or scFv: McCafferty et al., 1990), or as non-covalently associated heavy and light chains (Fab fragments) (Hoogenboom et al., 1991). Fab fragments have also been displayed as fusions with the major coat protein (gene 8: Kang et al., 1991). Recently we used phage to display a
small random combinatorial library $\left(2 \times 10^{5}\right.$ members) of scFv antibody fragments from the spleen mRNA of immunized mice (Clackson et al., 1991). The mRNA is presumably derived mainly from plasma cells (K. Hawkins \& G. Winter, unpublished results), as the level of Ig mRNA in these cells is up to 1000 -fold greater than in resting B-cells (Schibler et al., 1978). After only a single round of affinity selection, we isolated numerous different antibodies with affinities in the range of $10^{5} \mathrm{~m}^{-1}$ to $10^{8} \mathrm{~m}^{-1}$.
However, it is rarely possible to immunize humans to order, and the possibility of making human antibodies without prior immunization is particularly appealing. We have therefore applied the phage display technology to making human antibodies from V-gene repertoires from unimmunized donors. We made a large scFv library from the PBLs, and with greater than 10^{7} members it was similar in size to the B-cell repertoire of a mouse at any one moment. The library was also made as diverse as possible by using both V_{K} and V_{i} light chains, as well as V_{H} s derived from $\operatorname{Ig} M$ and Ig (; mRNA. Diversity was further maximized by using PCR primers based on each of the human heavy and light chain gene families (Marks et al., 1991). Finally, the library was subjected to multiple rounds of affinity selection to ensure that even a single clone in the original library could be isolated.

2. Materials and Methods

(a) Primer design

We optimized the design of the $P(X R$ primers for the rearranged V-genes to maximize the diversity of the PCR products. The primers were located at the 5^{\prime} and 3^{\prime} ends (back and forward primers, respectively) of the mature V-regions (Orlandi et al., 1989; Marks et al., 1991: Songsivilai et al., 1990), but did not incorporate internal restriction sites that mismatch the template and bias amplification. The back primers were designed to match each of the families of human V-genes, and forward primers to match each of the human germ-line J-segments (Table 1). Furthermore, sets of PCR primers were designed to optimize the linking of V_{H} and V_{k} or V_{λ} genes at random, and append restriction sites to the linked genes (Table 1 and Fig. 1).

> (b) Assay of donor serum for presence of IgM antibodies to $p h O x-B S A$ and $T E L$

Serum from the 2 donors was assayed for the presence of IgM antibodies to phOx-BSA and TEL using an ELISA-based assay kit for detection of human IgM antibodies in serum (Platest, Menarini Diagnostics). Microtiter plates were coated overnight with either $10 \mu \mathrm{~g}$ phOx-BSA $/ \mathrm{ml}$ or $10 \mu \mathrm{~g}$ TEL $/ \mathrm{ml}$. Plates were washed 3 times with PBS (phosphate-buffered saline: 25 mm $\left.\mathrm{NaH}_{2} \mathrm{PO}_{4}, 125 \mathrm{~mm}-\mathrm{NaCl}, \mathrm{pH} 7 \cdot 0\right)$ and blocked for 2 h with 2% MPBS (2% (w/v) skimmed milk powder (Marvel) in PBS) at $37^{\circ} \mathrm{C}$. Donor serum was diluted $1 / 40$ in PBS and $50 \mu \mathrm{l}$ was added to the microtiter wells and incubated for 30 min at room lemperature. The plates were washed 3 times with PBS and 50μ horseradish peroxidase-conjugated anti-human IgM antibody was

Figure 1. Making scFv gene repertoires. (a) mRNA is primed with constant region-specific oligonucleotides and 1st strand cDNA synthesized. (b) Portions of 1st strand cDNA are PCR amplified with a mixture of V-gene and J-segment primers. (c) The rearranged V_{H} and V_{L} PCR products are combined in a 2 nd PCR amplification containing linker DNA that overlaps the C terminus of the V_{H} and the N terminus of the V_{L} genes. This reaction mixture is subjected to temperature cycling followed by amplification. (d) Finally, the resulting scFv gene repertoires are reamplified with primers containing appended restriction sites.
added to each well and incubated for 30 min . Plates were washed 3 times with PBS, developed as in the kit protocol and the plate read at 450 nm .

(c) cDNA synthesis, PCR amplication and assembly of scFv genes

Blood (500 ml) containing approximately 10^{8} B-lymphocyles, was ubtained from 2 healthy volunteers. The white cells were separated in Ficoll and RNA was prepared using a modified method described by Cathala $e t$ al. (1983). Heavy chain repertoires were prepared from both IgG and IgM cDNA in order to tap both mature and naive lymphocytes (Roit et al., 1985), and light chain repertoires were prepared from both V_{κ} and V_{λ} genes. Thus, 4 first strand cDNA syntheses were made as described (Marks et al., 1991) from KNA corresponding to 2.5×10^{7} B-cells, using either an IgG or an IgM constant region primer for the heavy chains, or a κ or λ constant region primer for light chains (Table 1 and Fig. 1(a)). All of the cDNA was used to generate 4 separate repertoires of scFv genes ($\mathrm{V}_{\mathrm{H} \mu}-\mathrm{V}_{\kappa}, \mathrm{V}_{\mathrm{H} \mu}-\mathrm{V}_{\lambda}, \mathrm{V}_{\mathrm{H} \gamma}-\mathrm{V}_{\kappa} \mathrm{V}_{\mathrm{H} \gamma}-\mathrm{V}_{\lambda}$) as described below (Figs 1 and 2).
V_{H}, V_{κ} and V_{λ}-genes were amplified separately using an equimolar mixture of the appropriate family-based back and forward primers (Table 1, Figs 1(b) and 2). Reaction mixtures ($50 \mu \mathrm{l}$) were prepared containing $5 \mu \mathrm{l}$ of the supernatant from the cDNA synthesis, 20 pmol back primers, $\quad 20 \mathrm{pmol}$ forward primers, $250 \mu \mathrm{M}$-dNTPs
$10 \mathrm{~mm}-\mathrm{KCl}, 10 \mathrm{~mm}-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 20 \mathrm{~mm}-\mathrm{Tris} \cdot \mathrm{HCl}(\mathrm{pH} 8 \cdot 8)$, $2.0 \mathrm{~mm}-\mathrm{MgCl}_{2}, 100 \mu \mathrm{~g} \mathrm{BSA} / \mathrm{ml}$ and $1 \mu \mathrm{l}$ (1 unit) Vent DNA polymerase (New England Biolabs). The reaction mixture was overlaid with mineral (paraffin) oil and subjected to 30 cycles of amplification using a Techne thermal cycler. The cycle was $94^{\circ} \mathrm{C}$ for 1 min (denaturation), $57^{\circ} \mathrm{C}$ for 1 min (annealing) and $72^{\circ} \mathrm{C}$ for 1 min (extension). The products were purified on a 2% (\mathbf{w} / v) agarose gel, isolated from the gel by Geneclean (Bio-101) and resuspended in $25 \mu \mathrm{l}$ of water.
To make the scFv linker DNA, 52 separate $50 \mu \mathrm{IPCR}$ reactions were performed using each of the 4 reverse JH primers in combination with each of the 13 reverse V_{κ} and V_{λ} oligonucleotides (Table 1). The template was approximately 1 ng of $\mathrm{pSW} 2 \mathrm{scFvDl} \cdot 3$ (McCafferty et al., 1990) containing the short peptide ($\left.\mathrm{Gly}_{4} \mathrm{Ser}\right)_{3}$ (Huston et al., 1988). The PCR reaction reagents were as described above and the cycle was $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 45^{\circ} \mathrm{C}$ for 1 min and $72^{\circ} \mathrm{C}$ for 1 min . The linkers were purified on a 2% agarose gel, eluted from the gel on a Spin-X column (Costar) and precipitated with ethanol.

For PCR assembly of the scFv repertoires (Fig. 1(c)), approximately $\mathbf{1} \mu \mathrm{g}$ of a primary heavy chain amplification $\left(\mathrm{V}_{\mathrm{H} \mu}\right.$ or $\mathrm{V}_{\mathrm{H} \gamma}$) and $\mathrm{l} \mu \mathrm{g}$ of a primary light chain amplification (V_{κ} or V_{λ}) were combined with approximately 250 ng of the appropriate linker DNA (an equimolar mixture of each of the $6 \mathrm{JH}-\mathrm{V}_{\kappa}$ or $7 \mathrm{JH}-\mathrm{V}_{\lambda}$ linkers) in a 50μ I PCR reaction mixture and cycled 7 times $\left(94^{\circ} \mathrm{C}\right.$ for 2 min and $72^{\circ} \mathrm{C}$ for 2.5 min) to join the fragments. The reaction mixture was then amplified for 25 cycles ($94^{\circ} \mathrm{C}$ for 1 min and $72^{\circ} \mathrm{C}$ for 3 min) after the addition of 20 pmol of the outer PCR primers (Fig. 1(c)). Finally, the assembled products were gel-purified and reamplified for 25 cycles $\left(94^{\circ} \mathrm{C}\right.$ for $1 \mathrm{~min}, 55^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 2.5 min) with the flanking oligonucleotides containing the appended restriction sites (Fig. 1(d)). PCR buffers and dNTPs were as described previously. The resulting scFv repertoires ($V_{H \mu}-V_{\kappa}, V_{H \mu}-V_{\lambda}, V_{\mathbf{H}_{\gamma}}-V_{\kappa}, V_{\mathbf{H}_{\gamma}}-V_{\lambda}$ were purified on a 1.5% agarose gel, electroeluted and precipitated with ethanol (Sambrook et al., 1990). For subsequent cloning, the $V_{H \mu}-V_{\kappa}$ and $V_{H \mu}-V_{\lambda}$ repertoires were combined ($\mathbf{I g M}$ repertoire) as were the $V_{\mathbf{H} \gamma}-\mathrm{V}_{\mathrm{k}}$ and $\mathrm{V}_{\mathbf{H} \gamma}-\mathrm{V}_{\lambda}$ repertoires (IgG repertoire).

(d) Cloning of the scFv gene repertoires

Purified DNA of the scFv gene repertoires (1 to $4 \mu \mathrm{~g}$) was digested with NotI and either SfiI or NcoI restriction enzymes. (The 2 different restriction enzymes were tried in an attempt to increase the cloning efficiency.) After digestion, the fragments were extracted with phenol/ chloroform, and ligated into pHEN1 (Hoogenboom et al.. 1991) vector that had been digested with either $S f I$ and $N o t \mathrm{I}$ or $N c o \mathrm{I}$ and $N o t \mathrm{I}$ and electroeluted from a 0.8% agarose gel (Sambrook et al., 1990). Each scFv gene repertoire was combined in a ligation mixture which included $6 \mu \mathrm{~g}$ of digested vector, in a $100 \mu \mathrm{l}$ ligation mix with 2000 units of phage T4 DNA ligase (New England Biolabs) overnight at room temperature. The ligation mix was purified by extraction with phenol and precipitation with ethanol. The ligated DNA was resuspended in $10 \mu \mathrm{l}$ of water, and $2 \cdot 5 \mu \mathrm{l}$ samples were electroporated (Dower et al., 1988) into $50 \mu \mathrm{l}$ Escherichia coli TG1 (Gibson, 1984). Cells were grown in 1 ml of SOC (Sambrook et al., 1990) for 1 h and then plated on TYE (Miller, 1972) medium with $100 \mu \mathrm{~g}$ ampicillin $/ \mathrm{ml}$ and $1 \%(\mathrm{w} / \mathrm{v})$ glucose (TYE-AMP-GLC), in $243 \mathrm{~mm} \times 243 \mathrm{~mm}$ dishes (Nunc). Colonies were scraped off the plates into 10 ml of $2 \times$ TY broth (Miller, 1972) containing $100 \mu \mathrm{~g}$ ampicillin/ml, $\quad 1 \%$

Table 1
Oligonucleotide primers used for PCR of human immunoglobulin genes

A. 1st strand cDNA synthesis	
Human heavy chain constant region primers	
HuIgGl-4CHIFOR	5'-GIC CAC CTT GGT GTT GCT QGG CTI-3'
HuIgMFOR	5'-TGG AAG AGG CAC GTT CTT TTC TTT-3'
Human κ constant region primer	
HuGkFOR	5'-AGA CIC ILC CLT GIT GAA CLT CIT-3'
Human λ constant region primer	
HuC λ FOR	5'-TGA AGA TTC TGI AGG GGC CAC TGT
B. Primary PCRs	
Human V_{H} back primers	
HuVHlabACK	5'-CAG GIG Cag CIG GIG CAG TCI GG-3'
HuVH2aBACK	5'-cag gic anc tia agg gag tct ge-3'
HuVH3aBACK	5'-GAG GIG CAG CIG GIg GAG TCT 6G-3'
HuVH4aBACK	5'-CAG GIG Cag cig cag gag toc oc-3'
HuVH5abACK	5'-GAG GIG Cag Cig tig cag tci ac-31
HuVH6aBACK	5'-CAG GIA CAG CIG CAG CAG TCA GG-3'

Human $J_{\mathbf{H}}$ forward primers

HuJH1-2FOR	5'-TGA GGA GAC GGT GAC CAG GGT GOC-3'
HuJH3FOR	5'-TGA AGA GAC GGT GAC CAT TGT COC-3'
HuJH4-5FOR	5'-TGA GCA GAC GGT GAC CAG GGT TCC-3'
HuJH6FOR	$5^{\prime}-T G A ~ G G A ~ G A C ~ G G T ~ G A C ~ O G T ~ G G T ~ C O C-3 ' ~$

Human V_{κ} back primers
HuVflabACK $\quad 5^{\prime-G A C ~ A T C ~ C A G ~ A T G ~ A C C ~ C A G ~ T C T ~ C C-3 ' ~}$
HuVk2abACK 5^{\prime}-GAT GTT GIG AIG ACT CAG TCT \propto © ${ }^{\prime}$ '
HuVк3aBACK $\quad 5^{\prime}$-GAA ATT GIG TIG AOG CAG TCT CC-3'
HuVk4aBACK $\quad 5^{\prime}$-GAC ATC GIG ATG ACC CAG TCT CC-3'
HuVк5aBACK $\quad 5^{1-G A A ~ A C G ~ A C A ~ C T C ~ A O G ~ C A G ~ T C T ~ © C-3 ' ~}$
HuVk6aBACK $\quad 5^{1}$-GAA ATT GIG CIG ACT CAG TCT $\subset C$-3'
Human J_{κ} forward primers

Human λ back primers
HudibaCK $\quad 5^{\prime-}$-CAG TCT GIG TIG AOG CAG COG CC-3' Hu 2 BACK $\quad \zeta^{\prime-C A G ~ T C T ~ G C C ~ C T G ~ A C T ~ C A G ~ C C T ~ © C-3 ' ~}$ Huג3aBACK 5'-TCC TAT GIG CIG ACT CAG CCA ©C-3' Huג3bBACK 5'-TCT TCT GAG CIG ACT CAG GAC CC-3' Hud4BACK $\quad 5^{\prime}-$ CAC GTT ATA CTG ACT CAA COG $C C-3$ ' Huג5BACK $\quad 5^{\prime-}$ CAG ©CT GIG CIC ACT CAG OCG TC-3' Hud6BACK $\quad 5^{\prime}$-AAT TTT ATG CIG ACT CAG CCC CA-3'
Human λ forward primers

HuJ $\lambda 1 F O R$	5'-ACC TAG GAC GGT CAC CIT GGT CO-3'
HuJ $\lambda 2-3 F O R$	5'-ACC TAG GAC GGT CAG CTT GGT CCC-3'
HuJ $\lambda 4-5 F O R$	5'-ACC TAA AAC GGT GAG CTG GGT OCC-3'

(\therefore PCR assembly
Reverse J_{H} for seFv linker

RHuJHi-2	5'-GCA OCC TGG TCA OCG TCT CCT CAG GIG G-3'
RHuJH3	5'-GGA CAA TGG TCA COG TCT CIT CAG GIG G-3'
RHıJTH4-5	5'-GAA COC TGG TCA OCK TCT CCI CAG GIG g-3'
RHuJH6	5'-GAA OCA CSG TCA COG TCT CCI CAG

Reverse V_{κ} for scFv linker
RHuVklaBACKFv 5^{\prime}-GGA GAC TGG GIC ATC TGG ATG TOC GAT COG CC-3'
RHuVк2aBACKFv 5^{\prime}-GGA GAC TGA GIC ATC ACA ACA TOC GAT OCG CC-3'
RHuVк3aBACKFv 5^{\prime}-GGA GAC TGC GIC AAC ACA ATT TOC GAT OCG CC-3'
RHuVк4aBACKFv 5^{\prime}-GGA GAC TGG GIC ATC ACG ATG TOC GAT COG CC-3'
RHuVк5aBACKFv 5°-GGA GAC TGC GIG AGT GIC GTT TCC GAT COG CC-3'
RHuVк6aBACKFv 5^{\prime}-GGA GAC TGA GIC AGC ACA ATT TOC GAT $0 C G$ CC-3'

Table 1 (continued)

D. Reamplification with primers containing restriction sites

Human $V_{\text {II }}$ back primers
HuVHlaBACKSf $\quad 5^{\prime}$-GIC CIC GCA ACT GCG GCC CAG COG GCC ATG GCC CAG GIG CAG CIG GIG CAG TCT GG-3'

HuVH3aBAOKsfi $\quad b^{\prime}-G I C ~ C I C ~ G C A ~ A C T ~ G C G ~ G C C ~ C A G ~ C O G ~ G C C ~ A T G ~ G C C ~ G A G ~ G I G ~ C A G ~ C I G ~ G I G ~ G A G ~ T C T ~ G G-3 ' ~$
HuVH4aBACKSfi $\quad 5^{\prime}$-GIC CTC GCA ACT GCG GCC CAG COG GCC AIG GCC CAG GIG CAG CTG CAG GAG TOG GG-3'
HuVH5aBACKSfi $\quad 5^{\prime}$-GIC CIC GCA ACT GCG GCC CAG COG GCC ATG GCC CAG GTG CAG CTG TTG CAG TCT GC-3'
HuVH6aBACKSfi $\quad 5^{\prime}$-GIC CTC GCA ACT GOG GCC CAG COG GCC AIG GCC CAG GTA CAG CIG CAG CAG TCA GG-3'
Human J_{κ} forward primers
HuJKl BACKNot $\quad 5^{\prime}$-GAG ICA TTC TOG ACT TGC GGC OGC AOG TTT GAT TTC CAC CIT GGT CCC-3'
HuJk2BACKNot 5'-GAG TCA TTC TCG ACT TGC GGC OGC AOG TTT GAT CIC CAG CIT GGT COC-3'
HuItк3BACKNot 5'-GAG TCA TTC TCG ACT TGC GCC COC ANG TTT GAT ATC CAC TTT GGT COC-3'
HuJk4BACKNot $\quad 5^{\prime}$-GAG TCA TTC TCG ACT TGC GOC OGC AOG TTT GAT CTC CAC CIT GGT COC-3'
HuJK5BACKNot 5'-GAG TCA TTC TCG ACT TGC GOC OGC AOG TTT AAT CIC CAG TCG TGT COC-3'
Human J_{λ} forward primers

HuJdlFORNOT	5^{\prime}-GAG TCA TTC TCG ACT TGC GOC OGC ACC TAG GAC GGT GAC CTT GGT OCC-3'
HuJ $\lambda 2-3 F O R N O T$	5^{\prime}-GAG TCA TTC TOG ACT TGC GOC OGC AOC TAG GAC GGT CAG CTT GGT COC-3'
HuJ $\lambda 4-5 F O R N O T ~$	5^{\prime}-GAG TCA TTC TOG ACT TGC GOC OGC ACY TAA AAC GGT GAG CTG GGT COC-3'

glucose ($2 \times$ TY-AMP-GLU) and $15 \%(v / v)$ glycerol for storage at $-70^{\circ} \mathrm{C}$ as a library stock.

(e) Rescue of phagemid libraries

To rescue phagemid particles from the library, 100 ml of $2 \times$ TY-AMP-GLLU was inoculated with 10^{9} bacteria taken from the library stock (approx. $10 \mu \mathrm{l}$) and grown for 1.5 h , shaking at $37^{\circ} \mathrm{C}$. Cells were spun down (IECCentra $8,4000 \mathrm{revs} / \mathrm{min}$ for 15 min) and resuspended in 100 ml of prewarmed $\left(37^{\circ} \mathrm{C}\right) 2 \times \mathrm{TY}$ broth containing $100 \mu \mathrm{~g}$ ampicillin $/ \mathrm{ml} \quad\left(2 \times\right.$ TY-AMP), $\quad 2 \times 10^{10}$ plaqueforming units of VCS-M13 (Stratagene) particles were added and the mixture incubated 30 min at $37^{\circ} \mathrm{C}$ without shaking. The mixture was then added to 900 ml of $2 \times \mathrm{TY}$ broth containing $100 \mu \mathrm{~g}$ ampicillin $/ \mathrm{ml}$ and $25 \mu \mathrm{~g}$ kanamycin $/ \mathrm{ml}$ ($2 \times$ TY-AMP-KAN), and grown overnight, shaking at $37^{\circ} \mathrm{C}$. Phage particles were purified and concentrated by throe PEG-precipitations (Sambrook et al., 1990) and resuspended in PBS to 10^{13} transducing units $/ \mathrm{ml}$ (ampicillin-resistant clones).

(f) Selection of $p h O x: B S A$ binders using tubes

For selection, $75 \mathrm{~mm} \times 12 \mathrm{~mm}$ immuno tube (Nunc; Maxisorp) was coated with 4 ml of $\mathrm{phOx}:$ BSA ($1 \mathrm{mg} / \mathrm{ml}$; 14 phOx per BSA: Mäkelä et al., 1978) in PBS overnight at room temperature. After washing 3 times with PBS, the tube was incubated for 2 h and $37^{\circ} \mathrm{C}$ with 2% MPBS for blocking. The wash was repeated and phagemid particles (10^{13} t.u.) in 4 ml of 2% MPBS added, incubated 30 min at room temperature, systematically inverting the tube using a rotating turntable, and then left undisturbed for a further 1.5 h at room temperature. Tubes were then washed 20 times with PBS, 0.1% (v/v) Tween 20 and 20 times with PBS (each washing step was
performed by pouring buffer in and out immediately). Bound phage particles were eluted from the tube by adding 1 ml of 100 mm -triethylamine, inverting the tube using a rotating turntable for 15 min . The eluted material was immediately neutralized by adding 0.5 ml of 1.0 m -Tris. $\mathrm{HCl}(\mathrm{pH} 7 \cdot 4)$. Phage were stored at $4^{\circ} \mathrm{C}$. Eluted phage (in 1.5 ml) were used to infect 8 ml of logarithmic growing E. coli TGl cells in 15 ml of $2 \times$ TY broth, and plated on TYE-AMP-GLU plates as described above, yielding on average $10^{7} \mathrm{t}$.u. For selection of phOx:BSA binders, the rescue-selection-plating cycle was repeated 4 times, after which phagemid clones were analysed for binding to both phOx:BSA and BSA.
(g) Selection for lysozyme binders by panning and by affinity column
A circular Petri dish ($35 \mathrm{~mm} \times 10 \mathrm{~mm}$ Falcon 3001 Tissue culture dish) was used for enrichment by panning. During all steps, the plates were rocked on an A600 rocking plate (Raven Scientific). Plates were coated overnight with 1 ml of TEL ($3 \mathrm{mg} / \mathrm{ml}$; Sigma) in 50 mm -sodium hydrogen carbonate (pH 9.6), washed 3 times with 2 ml of PBS, and blocked with 2 ml of 2% MPBS at room temperature for 2 h . Approximately 10^{13} t.u. phage in 1 ml of 2% MPBS were added per plate, and left rocking for 2 h at room temperature. Plates were washed for 5 min with 2 ml of the following solutions: 5 times with PBS; PBS, 0.02% Tween $20 ; 50 \mathrm{~mm}$ Tris $\cdot \mathrm{HCl} \quad(\mathrm{pH} 7.5), \quad 500 \mathrm{~mm} \cdot \mathrm{NaCl} ; \quad 50 \mathrm{~mm}-\mathrm{Tris} \cdot \mathrm{HCl}$ $(\mathrm{pH} 8.5), \quad 500 \mathrm{~mm}-\mathrm{NaCl} ; \quad 50 \mathrm{~mm}-\mathrm{Tris} \cdot \mathrm{HCl} \quad(\mathrm{pH} 9.5)$, $500 \mathrm{~mm}-\mathrm{NaCl}$ and finally 50 mm -sodium hydrogen carbonate ($\mathrm{pH} 9 \cdot 6$). Bound phage particles were then eluted by adding 1 ml of 100 mm -triethylamine and rocking for 5 min before neutralizing with 0.5 ml of 1 m Tris. HCl (pH 74). Eluted phage was used to infect logarithmic growing E. coli TGl as described above.

Alternatively, TEL-Sepharose columns were used for affinity purification. One ml columns of TEL coupled to Sepharose (as described by Ward et al., 1989) were washed extensively with PBS, blocked with 5 ml of 2% MPBS, and 10^{13} t.u. phage in 1 ml of 2% MPBS loaded. Columns were washed with 50 ml of PBS; 10 ml of $\mathrm{PBS}, \quad 0.02 \%$ Tween 20; 5 ml of $50 \mathrm{~mm}-\mathrm{Tris} \cdot \mathrm{HCl}$ (pH 7.5), $500 \mathrm{~mm}-\mathrm{NaCl} ; 5 \mathrm{ml}$ of $50 \mathrm{~mm}-\mathrm{Tris} \cdot \mathrm{HCl}(\mathrm{pH} 8.5)$, $500 \mathrm{~mm}-\mathrm{NaCl} ; \quad 5 \mathrm{ml}$ of $\quad 50 \mathrm{~mm}-\mathrm{Tris} \cdot \mathrm{HCl} \quad(\mathrm{pH} 9.5)$ $500 \mathrm{~mm}-\mathrm{NaCl}$ and finally 5 ml of 50 mm -sodium hydrogen carbonate ($\mathrm{pH} 9 \cdot 6$), $500 \mathrm{~mm}-\mathrm{NaCl}$. Bound phage were eluted using 1.5 ml of 100 mm -triethylamine and neutralized with 0.5 ml 1 m -Tris HCl (pII 7 4). Eluted phage were used to infect logarithmically growing E. coli TGI as described above.

For selection of lysozyme binders by either method, the rescue-selection-plating cycle was repeated 4 times, after which phagemid elones were analysed for binding by ELISA.

(h) Rescue of phage or soluble scFv from individual phagemid clones for binding ELISA

To rescue phage, single ampicillin-resistant colonies, resulting from infection of E. coli TG1 with eluted phage. were inoculated into $150 \mu \mathrm{l}$ of $2 \times$ TY-AMP-GLU broth in 96 -well plates (Cell wells: Corning) and grown with shaking (250 revs $/ \mathrm{min}$) overnight at $37^{\circ} \mathrm{C}$. A 96 -well plate replicator was used to inoculate approximately $4 \mu \mathrm{l}$ of the overnight cultures on the master plate into $200 \mu \mathrm{l}$ fresh $2 \times$ TY-AMP-GLU. After $1 \mathrm{~h}, 50 \mu \mathrm{l}$ of $2 \times$ TY-AMP-GLC broth containing 10^{8} p.f.u. of VCS-M13 was added to each well, and the plate incubated at $37^{\circ} \mathrm{C}$ for 45 min without agitation. The plate was then shaken at $37^{\circ} \mathrm{C}$ for 1 h after which time glucose was removed by spinning down the cells (IEC-Centra 8, 4000 revs/min for 15 min), and aspirating the supernatant with a drawn-out glass Pasteur pipete. Cells were resuspended in $200 \mu \mathrm{l} 2 \times$ TY-AMPKAN broth and grown for 20 h . shaking at $37^{\circ} \mathrm{C}$ Supernatant containing phage was tested for binding by ELISA.

To produce soluble scFvs, single ampicillin-resistant colonies of infected E. coli HB2151, a non-suppressor strain (Carter et al., 1985), were inoculated into $150 \mu \mathrm{l}$ of $2 \times \mathrm{TY}$ broth containing $100 \mathrm{\mu g}$ ampicillin/ml and 0.1% glucose in 96 -well plates and grown with shaking at $37^{\circ} \mathrm{C}$ until an $A_{600 \mathrm{~nm}}$ of 0.9 was reached. Expression of soluble seFv was induced by the addition of isopropyl β-d-thiogalactopyranoside to a final concentration of 1 mM (DeBellis \& Schwartz, 1990) and the cultures grown overnight at $30^{\circ} \mathrm{C}$. Supernatant containing soluble scFv was taken for analysis by ELISA.

(i) ELISAA

Analysis of phage for binding to phOx:BSA, BSA or lysozyme by ELISA was performed on bacterial supernatants containing phage essentially as described by Clackson et al. (1991), with $100 \mu \mathrm{~g} \mathrm{phOx}:$ BSA or BSA $/ \mathrm{ml}$, or 3 mg TEL $/ \mathrm{ml}$ used for coating. The specificity of isolated clones was checked by ELISA of the soluble scFv fragments using plates coated with various proteins at $1 \mathrm{mg} / \mathrm{ml}$ (hen egg ovalbumin, hen egg lysozyme, chymotrypsinogen A, cytochrome c, bovine thyroglobin, glycer-aldehyde-3-phosphate dehydrogenase, chicken egg white trypsin inhibitor (Sigma), keyhole limpet haemocyanin (CalBiochem)). Binding of soluble scFvs to antigen was detected with the mouse monoclonal antibody 9E10 ($1 \mu \mathrm{~g} / \mathrm{ml}$), which recognizes the C-terminal peptide tag
(Munro \& Pelham, 1986). and peroxidase-conjugated antimouse Fe antibody (Sigma), as described (Ward ot al.. 1989).

(j) DNA fingerprinting of clones.

The diversity of the original and selected tibraries was determined by PCR screening (Güssow \& Clackson, 1989). Recombinant clones were screened before and after selection by amplifying the seFv insert using primers LMB3 (5^{\prime}-CAGGAAACAGCTATGAC, which sits upstream from the pelB leader sequence) and fd-SEQ1 (5^{\prime}-GAATTTTCTGTATGAGG, which sits in the 3 end of gene 3) followed by digestion with the frequent-cutting enzyme BstNI. The heavy and light chain variable regions from at least 2 clones of each restriction pattern were sequenced using a Sequenase kit (USB) by the dideoxy chain termination method (Sanger et al.. 1977). The nucleic acid sequences of the V-regions were compared with a database of germline V-genes to determine the family of origin and extent of somatic mutation.

(k) Frequency of lambda and kappa light chains in the unselected IgM library

The frequency of lambda and kappa light chains in the unselected IgM library was determined by probing replica-plated colonies with either an equimolar mixture of the $V_{,}$P(CR primers (Table 1) or an equimolar mixture of family-specific V_{κ} framework 1 probes (Marks of al. 1991). One hundred individual colonies from the unselected IgM library were replica-plated on $2 \times$ TY-AMP GLU plates and lifted onto nylon membranes (Hybond-N. $045 \mu \mathrm{~m})$. The membranes were treated as described (Buluwela et al. 1989) and then ultraviolet crosslinked for 5 min (Stratalinker: Stratagene). Membranes were prehybridized for 20 min at $42^{\circ} \mathrm{C}$ in hybridization solution $(0.9 \mathrm{~m}-\mathrm{NaCl} .0 .09 \mathrm{~m}$-Tris (pH 7.5). 6 mm -EDTA ($\mathrm{pH} 7 \cdot 4$). 1 mm -sodium pyrophosphate, 0.5% (v/v) NP40, $0.6 \mathrm{mg} / \mathrm{l}$ rATP. $20 \mathrm{mg} / 1$ yeast RNA, $20 \mathrm{mg} / \mathrm{l}$ Ficoll $400.20 \mathrm{mg} / \mathrm{l}$ polyvinylpyrrolidone and $20 \mathrm{mg} / \mathrm{BSA}$) and then hybridized for 2 h at $42^{\circ} \mathrm{O}$ with 10 pmol of $\left(\gamma^{32} \mathrm{P}\right)$-labelled oligonucleotide probe. Membranes were washed once at $42^{\circ} \mathrm{C}$ for 10 min in $6 \times \mathrm{SSC} \quad(900 \mathrm{~mm}-\mathrm{NaCl}$. 90 mu-trisodium citrate. pH 7.0$) .01 \%(\mathrm{w} / \mathrm{v})$ SDS, 0.1% $(\mathrm{w} / \mathrm{v})$ sodium pyrophosphate, once for 15 min at $55^{\circ} \mathrm{C}$ in 3 м-tetramethylammonium chloride, 50 mm -Tris (pH 8.0). 0.1% SDS. 2 mm-EDTA and exposed for 2 h on Fuji RX film.

(1) Parificution of se'ves and affinity determination

The phOx binding seFv clone 15 (xphOx15) and the TEL binding $s \mathrm{Fv}$ clone 9 ($\mathrm{x}^{\mathrm{T} E L} 9$). which gave the strongest ELISA signals, were chosen for affinity determination. Colonies of E. coli HB2151, a non-suppressor strain. harbouring the appropriate phagemid were used to inoculate 10 l of $2 \times$ TY containing $100 \mu \mathrm{~g}$ ampicillin/ml and 0.1% glucose. The cultures were grown to an $A_{600 \mathrm{~nm}}$ of 0.9 and expression of soluble scFv induced by the addition of IPTG to a final concentration of 1 mm (DeBellis \& Schwartz, 1990). Supernatant was concentrated 8 -fold by ultrafiltration (Filtron; Flowgen) and 200 ml loaded onto a 5 ml column of Protein A-Sepharose crosslinked by dimethylpimelidate (Harlow \& Lane, 1988) to the monoclonal antibody 9E10 that recognizes the C-terminal peptide tag (Clackson et al., 1991: Munro \& Pelham, 1986). The column was washed with 100 ml of PBS; 10 ml of PBS, $0.5 \mathrm{~m}-\mathrm{NaCl}: 10 \mathrm{ml}$ of 0.2 m -glycine (pH 6.0) ; and

10 ml of 0.2 m -glycine (pH 5.0). The scFv fragment was eluted with 10 ml of 0.2 m -glycine (pH 3.0), neutralized with Tris base and dialysed into PBSE (PBS buffer containing 0.2 mm -EDTA). Supernatant from a separate induction of the α TEL 9 scFv was purified on lysozymeSepharose (Ward et al., 1989).

Affinities were measured by fluorescence quench techniques, based on the quenching of tryptophan fluorescence by the bound hapten or antigen (Eisen 1964; Foote \& Milstein, 1991; J. Foote \& G. Winter, unpublished results). All measurements were made with a PerkinElmer LS-5B spectrofluorimeter, using an excitation wavelength of 280 nm . Antibody (0.9 ml) in PBSE, was placed in a $4 \mathrm{~mm} \times 10 \mathrm{~mm}$ cuvette in the instrument, and held at $20^{\circ} \mathrm{C}$.

For determination of the affinity of $\alpha \mathrm{phOxl5}$, fluorescence quench titration was performed essentially as described by Foote \& Milstein (1991). A regime of hapten excess was used: the antibody concentration (100 nm) was at most equal to the lowest concentration of hapten. Negligible volumes of the hapten $4-\gamma$-amino-butyric acid methylene 2 -phenyl-oxazol-5-one ($\mathrm{phOx}-\mathrm{GABA}$) were added to α phOx 15 protein to cover a concentration range of 0.2 to 4 times the preliminary estimate of the dissociation constant (500 nm), and the fluorescence detemined I min after each addition. Emission was monitored at 340 nm . Data were averaged from 3 runs and the value of the equilibrium constant was obtained from a leastsquares fit of the data to a hyperbola.

Fluorescence quench titration was also used to determine the affinity of α TEL9 (Eisen, 1964; J. Foote \& G Winter. unpublished results). α TEL 9 protein at 200 mm was titrated to 2 -fold molar excess with TEL (Sigma) in PBSE, sample fluorescence being determined 1 min after each addition. Emission was monitored at 350 nm and the titration repeated 6 times. Five identical titrations with TEL were also performed on α phOx15 as control. The fluorescence data from each of the 6 titrations of α TEL 9 were subtracted from the mean fluorescence values from the 5 control titrations of $\alpha \mathrm{phOx} 15$ to account for the fluorescence contributed by the added TEL. To obtain the equilibrium constant, fluorescence data, averaged from the 6 corrected titrations of α TEL9, were fit by least squares to a hyperbola.

> (m) Western blot

Western blotting was performed essentially as described by Towbin et al. (1979). Samples (10 $\mu \mathrm{g}$ and
$1 \mu \mathrm{~g}$) of TEL were subjected to SDS/PAGE (Laemmli, 1970) and protein transferred by electroblotting to Immobilon-P (Millipore). The blot was blocked with PBS, 3% BSA for 20 min and then incubated with α TEL9 $(1 \mu \mathrm{~g} / \mathrm{ml})$ in PBS, 3% BSA for 1.5 h . Binding of α TEL9 to lysozyme was detected with $9 \mathrm{E} 10(1 \mu \mathrm{~g} / \mathrm{ml})$ and peroxi-dase-conjugated anti-mouse Fe antibody (Sigma) as described Ward et al. (1989).

3. Results

(a) Generation of scFv gene repertoires and libraries

Single bands of the correct size for V_{H}, V_{κ} and V_{λ} cDNA were obtained after amplification of first strand cDNA made from RNA primed with the appropriate constant region primer (Table 1). No bands were obtained in the absence of a primer in the first strand cDNA reaction, indicating that the products resulted from the amplification of RNA and not DNA. A major band of the appropriate size for an assembled scFv gene was obtained when the V_{H} and V_{κ}, or V_{H} and V_{λ}, were combined with linker DNA in a PCR reaction. No product was obtained in the absence of linker DNA (data not shown).
Libraries of $2.9 \times 10^{7} \quad \mathrm{~V}_{\mathrm{H}_{\mu}}-V_{\mathrm{L}} \mathrm{scFv}$ clones (IgM library) and $1.6 \times 10^{8} \quad V_{H \gamma}-V_{L} \quad \mathrm{scFv}$ clones (IgG library) were obtained (Fig. 2). Analysis of 100 colonies from the IgM library by probing revealed that 81 carried either kappa or lambda light chains (45 (56%) for lambda and $36(44 \%$) for kappa). Analysis of 48 clones from each unselected library (IgM and IgG) indicated that greater than 90% of the clones carried an insert, and the libraries appeared to be extremely diverse as judged by the BstNI restriction pattern (Fig. 3(a)).

(b) Isolation and characterization of binders

Phagemid particles were rescued from the library by superinfection with helper phage and selected by passing over either immobilized TEL or phOx:BSA. Eluted phage were used to infect E. coli, the library was again rescued with helper phage and the phagemid particles were subjected to a second

Figure 2. The origin of V-genes in the phage libraries. RNA made from $10^{8} \mathrm{~B}$-lymphocytes was primed with constant region-specific primers (for $\operatorname{IgM}, \operatorname{IgG}, \mathrm{C} \kappa$ and $\mathrm{C} \lambda$) and 1 st strand $\mathrm{c} D N A$ synthesized. Portions of 1st strand cDNA were used to amplify $V_{H \mu}$ and $V_{H y}$ genes, and V_{κ} and V_{λ} genes. The V-genes were assembled together in separate PCR assembly reactions to generate 4 distinct se $F v$ repertoires: $V_{H \mu}-V_{\kappa}, V_{H \mu}-V_{\lambda}, V_{H z}-V_{\kappa}$ and $V_{H y}-V_{\lambda}$. The $V_{H_{\mu}}-V_{\kappa}$ and $V_{H \mu}-V_{\lambda}$ repertoires were combined and cloned to generate a $V_{H \mu}$ scFv library of 2.9×10^{7} clones. Likewise the $V_{\mathbf{H} \gamma}-V_{\kappa}$ and $V_{\mathbf{H}_{\gamma}}-V_{\lambda}$ repertoires were combined and cloned to generate a $V_{\mathrm{H} \gamma} \mathrm{scFv}$ library of 1.6×10^{8} clones.

Figure 3. BstNl fingerprinting of scFv clones. The scFv insert was amplified from individual colonies, the product digested with Bst Nl and analysed on an agarose gel. M, ϕ X 174 DNA HaeIII-digested molecular weight markers. (a) Lanes 2 to 12 and 14 to 23 are digests from colonies from the library before selection. (b) Lanes 2 to 12 and 14 to 21 are digests from 21 random colonies after 4 rounds of panning of the IgM library on TEL. Lanes 22 and 23 are digests of 2 other TEL binding clones obtained after 4 rounds of selection of the IgM or IgG library on a TEL column, respectively.
round of affinity purification. Four rounds of rescue-selection-infection were performed. Clones binding TEL, BSA and phOx were identified after four rounds of selection of the IgM library (Table 2). In contrast only clones binding TEL were identified after four rounds of selection of the IgG library
(Table 2). Unselected clones and clones isolated after one and two rounds of selection showed no binding. Comparison of the frequency of binders to TEL and BSA obtained after three and four rounds of selection indicates up to 50 -fold enrichment in the fourth round of selection. Thus, these binders must

Table 2
Frequency of binding clones from scFv libraries before and after selection

	Rounds of selection				4
	0	1	2	3	
A. Ig. M library					
Human anti-TEL: panning	$0 / 864$	0/192	0/192	3/192	94/192
Human anti-TEL: columns					19/96
Human anti-BSA: panning	0/192	$0 / 192$	$0 / 192$	$2 / 192$	43/96
Human anti-phox: panning	$0 / 192$	$0 / 192$	0/192	0/192	$1 / 96$
B. IgG library					
Human anti-TEL: panning				-	$0 / 96$
Human anti-TEL: columns					$6 / 96$
Human anti-BSA: panning					$0 / 96$
Human anti-phox: panning					$0 / 96$

[^1] (scFv) with V_{H} genes derived from $\operatorname{IgM} \mathrm{mRNA}$; IgG library, scFv genes with V_{H} genes derived from $\operatorname{IgG} \mathrm{mRNA}$.

Figure 4. Specificity of soluble single chain $\mathrm{Fvs}_{\mathrm{v}}(\mathrm{scFvs}$). Binding was determined by ELISA to a variety of proteins. α TEL $9, \alpha$ TEL13 and α TEL $14=3$ anti-turkey lysozyme scFvs; α phOx $15=$ anti- 2 -phenyloxazole- 5 -one seFv; α BSA3 $=$ anti-bovine serum albumin scFv. Antigens: TEL (filled box), phOx-BSA (hatched box), BSA (stippled box); other antigens (open box) = keyhole limpet haemocyanin, bovine thyroglobulin, chymotrypsinogen A, hen-egg ovalbumin, cytochrome c, hen egg lysozyme, hen egg trypsin inhibitor, glyceraldehyde-3-phosphate dehydrogenase, and plastic. plastic.
have been present in the original library at a frequency of 1 per 6.25×10^{6} clones ($1 / 50^{4}$) if enrichment were equal over the four rounds of selection.

BstNI fingerprinting of 23 lysozyme binding clones from the IgM library indicated the presence of three different digestion patterns, whereas the six lysozyme binding clones obtained from the IgG library all had the same restriction pattern (Fig. 3(b), and data not shown). The BstNI fingerprinting of 35 BSA binding clones indicated the presence of only one digestion pattern (data not shown) which was different from the pattern of the phOx binding clone.

The sequences of the variable regions of multiple clones representing the different restriction patterns indicated that there were four unique TEL binders (α TEL9, α TEL13, α TEL14 and α TEL16), one BSA binder (α BSA3) and one phOx binder ($\alpha \mathrm{phOxl} 5$) (Table 3). The V_{H} were derived from four different V_{H} families and five different V_{H} germline genes (Table 5). The light chains were mainly lambda (5/6) and were derived from four different light chain families and germline genes (Table 5). Both V-genes of α BSA3 were unmutated compared to germline (Tables 4 and 5). Similarly, the V-genes of $\alpha \mathrm{phOxl} 5$ were minimally mutated from germline (4 differences with VH380.6 (Berman et al., 1988) and six with IGLV3S1 (Frippiat et al., 1990)). Two other antibodies (α TEL13 and α TEL16) had heavy chains that are more extensively mutated (11 and 18 changes from VH251 (Sanz et al., 1989)). Only upper estimates of mutation are possible for the other chains (Tables 4 and 5), as the sequences of all the germ-line V-genes from these families are not known. Finally, the TEL binder isolated from the IgG library (α TEL16) was highly related to one of the IgM TEL binders (α TEL13), and with a greater degree of somatic mutation.

(c) Specificity of binding

Soluble antibody fragments were readily prepared by growth of E.coli HB2151, a non-suppressor strain, carrying the phagemid (Hoogenboom et al., 1991). Soluble scFvs of α phOx15, α BSA3, α TEL9, α TEL1 3 and α TEL14 were highly specific in an ELISA to test cross-reactivity (Fig. 4). The α TEL16 scFv, isolated from the IgG library, could not be detected in ELISA as a soluble fragment, probably due to its low affinity.

Figure 5. Purification of scFvs protein from a bacterial supernatant. M, molecular weight markers $\left(\times 10^{-3}\right)$. Lane 2, unpurified bacterial supernatant; lane 3, α TEL9 scFv protein purified on a lysozyme-Sepharose column; lane 4, α TEL9 scFv protein purified on column of antibody 9 E 10 directed against the c-myc tag; lane 5 , xphOx 15 scFv protein purified as in lane 4.
Table 3
Deduced protein sequences of antigen－specific heavy and light chains selected from unimmunized libraries

A．Ileazy chains										
Clone	FR 1		CDR 1	FR 2	CDR 2		FR 3		CDR 3	FR 4
oph0x15	QVQLVQSGAEVKKPGASVKVSCKASGYTFT		SYGIS	WVRQAPGQGLEWMG	WISAYNGNTKYAQKLQG		RVTMTTDTSTSTAYMELRSLRSDDTAVYYCVR I		PKRTATLHYYIDV	WGKGTIVTVSS
aBSA 3	QVQLVQSGGGVVQPGRSLRLSCAASGFTFS		SYGMH	WVRQAPGKGLEWVA	VISYDGSN	KYYADSUKG	RFTISRDNSKNTLYLQMNSLRAE	TAVYYCAK TG	YSSGWGYFDY	WGQGTLVTVSS
dTEL9	QVQLQQSGSGLVKPSQTLSLTCSVSGDSIS		SGGYSWS	WIRQPSGKGLEWIG	SVHHSGPT	YYNPSLKS	RVTMSVDTSKNOFSLKLKSVTAA	TAMYFCAR EGG	GSTWRSLYKHYYMDV	WGKGTLVTVSS
人TEL14	QVQIQESGPGLVKPSETLSLVCTVSGGSLS		FSYWG	WIRQPPGKGLENIG	YISHRGTD	YNSSLQS	RVTISADTSKNQFSLKLSSVTAA	TAVYYCAR SFS	SNSFFFGY	WGQGTLVTVSS
aTEL13	QVQLVQSGAEVKKPGQSIMISCQGSGYSFS		NYWIG	WVRQMPGKGLEWMG	IIYPGDSD	TRYSPSFQG	QVTISADKSISTAYLHWSSLKAS	TALYYCAR LVG	GGTPAY	WGQGTLVIVSS
aTEL16	QVQLVQSGAEVKKPGQSLRISCKGAGYSFS		TYWIG	WVRQMPGKGLEWMG	IIYPDDSD	TRYSPSFEG	QVTISVDKSITTAYLHWSSLKAS	TAIYYCAR LV	GGAPAY	WGQGTLVTVSS
13．Light chains										
Clone	FR 1			FR 2	CDR 2		FR 3	CDR 3	FR 4	
aphox15	QSVLTQPPSVSAAPGQKVTISC	SGSSSN	IGNNYVS	WYQHLPGTAPNLLIY	DNNKRPS	GIPDRFSGS	KSGTSATLGITGLQTGDEADYYC	GTWDGRLTAAV	FGSGTKVIVLG	
aBSA3	SSELTQDPAVSVALGQTVRITC	QGDSLR	SYYAS	WYQOKPGQAPVLVIY	GKNNRPS	GIPDRFSGS	SSGNTASLTITGAQAEDEADYYC	NSRDSSGNHVV	FGGGTKLTVLG	
aTEL9	EIVLTQSPSSLSASVGDRVTITC	RASQSI	SNYLN	WYQQKPGKAPKLLIY	AASTLOS	GVPSRFSGS	GSGTDFTLTINSLQPEDFATYYC	Q⿴囗十NSFPLT	FGGGTKLEIKR	
aTEL14	SSELTQDPAVSVAFGQTVRITC	QGDSL	SSYAS	WYQQKPGQAPILVIY	GENSRPS	GIPDRFSGS	SSGNTASLTITGAQAEDEADYYC	NSRDSRGTHLEV	FGGGTKITVLG	
人TEL13	HVILTQPASVSGSPGQSITISC	TGSSRD	VGGYNYVS	WYQHHPGKAPKLJIS	EVINRPS	GVSNRFSGS	KSGNTASLTISGIQAEDEADYFC	ASYTSSKTYV	FGRGTKLTVLG	
aTEL16	QSALTQPASVSGSPGQSITISC	SGSSSD	IGRYDYVS	WYQHYPDKAPKLLIY	EVKHRPS	GISHRFSAS	KSGNTASLTISELQPGDEADYYC	ASYTESKTYI	FGGGTKVIVLG	

[^2]Table 4
Nucleotide sequences of antigen specific heavy and light chain V－genes selected from unimmunized libraries compared with the most homologous germline gene

100
acctatgera身 200
TCCAGGGCAG
氐

AGCTATGGCA d
 －－－－－－－－－－

4
4
8 GCAGACTCCG 290
 1
∞
CACCTTTACC ccacagalce 안烒 САССТTСАGT ACGGCCGTGT CCTCTGGATT
\therefore

0
0
岂
0
0
0
0
0
0

170
ACAATGGTAA АС ATCTGACGAC
－
160 ATCAGCGCTI GGAGCCTGAG GGAGCCTGAG
in GATGGGATGG －－－－－－－－－ 250 ATGGAGCTGA
8 40 CCTGGACAAG GGCTIGAGIG －－－－－－－－－－－－－－－－－－240 CATCCACGAG CACAGCCTAC
$\stackrel{\sim}{\sim}$
 120 GCGACAGGCC
 CCAGCTGGGT AGTCACCATG －

CAGGTGCAGC CAGGTGCAGC

 110TGCACTGGGT 210
ATTCACCATC － 01

1
1

VH380． 6 aphox15
vH380． 6 oph0x15

VH380． 6 орНОх15

VH1．9III
IH1 9III
VH1．9III
aBSA3
U514A
גTEL9 \dagger
U514G
U514A舄

U514G
J514A α TEL9
U514G U4H
α TEL14
U4． aTEL14

U4．H
Table 4 (continued)

		20				60		80	${ }^{90}$	
vH251	GAGGTGCAGC	TGGTGCAGTC	TGGAGCAGAG	GTGAAAAAGC	CCGGGGAGTC	TCTGAAGATC	TCCTGTAAGG	GTTCTGGATA	Cagctitacc	agcractgea
α TEL13					-----C----	-----T---	------C---		--------G-	-
aTEL16			G--		-----C----	G---		--G----	--G-	-C
	110	120	130	140	150	160	170	180	190	00
VH251	TCGGCTGGGT	GCGCCAGATG	CCCGGGAAAG	GCCTGGAGTG	GATGGGGATC	atctatcitg	grgactctga	taccagatac	Agccegrecr	tccaagecca
aTEL13										
aTEL16							A--------		--T	--G-G-----
	210	220	230	240	250	260	270	280	290	
VH251	GGTCACCATC	TCAGCCGACA	AGTCCATCAG	caccecctac	CtGCAGTGGA	GCAGCCTGAA	GGCCTCGGAC	ACCGCCATGT	ATTACTGTGC	GAGA
aTEL13					C--C			C-T-	--	G
α TEL 16		--C-T--	--	т-----A---	--C-			T-		
B. Light ch										
	10	20	30	40	50	60	70	80	90	100
JM21A	CAGTCTGTGT	tgacgcaccl	GCCCTCAGTG	TCTGCGGCCC	CAGGACAGAA	GGTCACCATC	TCCTGCTCTG	gaagcagcte	CAACATTGGG	aatanttatg
aphox15					A-					
	110	120	130	140	150	160	170	180	190	200
JMa1A	TATCCTGGTA	ccagcagcta	CCAGGAACAG	СССССААААСТ	CCTCATTTAT	gacantanta	AGcGaccetc	AGGGATTCCT	GACCGATTCT	CTGGCTCCAA
aphox15		-----		T-						
	210	220	230	240	250	260	270	280	90	
	GTCTGGCACG	TCAGCCACCC	tGgGcatcal	CGGACTCCAG	ACTGGGGACG	AGGCCGATTA	TTACTGCGGA	ACATGGGATA	GCAGCCTGAG	TGCT
aphox15								--c------	--C------	
						60	70	80	90	100
IgLv3s1	тСtтCtgacc	TGACTCAGGA	CCCTGCTGTG	TCTGTGGCCT	TGGGACAGAC	AgTCAGGATC	Acatgcealg	gagacagcct	cagangctat	tatccalget
abSA3	--g-------									
aTELI4	--q-				-				T-C-	
	110	120	130		150	160		180		
IgIv3S1	GGTACCAGCA	GAAGCCAGGA	CAGGCCCCTG	TACTTGTCAT	Ctatggtana	AACAACCGGC	CCTCAGGGAT	CCCAGACCGA	TTCTCTGGCT	CCAGCTCAGG
abSA3										
dTEL14					G--	--G----				
	210		230					280		
IgLV3S1	AAACACAGCT	TCCTTGACCA	TCACTGGGGC	TCAGGCGGAA	GATGAGGCTG	ACtattactg	TAACTCCCGG	GACAGCAGTG	gtanccat	

$\begin{array}{rrrr}60 & 70 & 80 & 90\end{array} 100$

\circ

50
U
U
U
St
H
1 윰

$\begin{array}{r}0 \\ 0 \\ \text { H } \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$
N

악

0
0
0
0
0
U

--cgt-ata------- $\mathrm{t}-$

 a agcccccan \qquad
 T---------TGCCTCCGTG CACCCAGGCA 4
0
0
0
0
0
3 ${\underset{i}{4}}_{\substack{1 \\ 1}}^{\substack{1 \\ \sim}}$感 $\begin{array}{ll}1 & 1 \\ 1 \\ 1 \\ 1 & 1 \\ 1 & 1 \\ 1\end{array}$

$$
\begin{array}{r}
220 \\
\text { AACACGGCCT }
\end{array}
$$

$\stackrel{\circ}{-}$
CAAGTCTGGC A-----------C---

JMV22F. 1
aTEL13 JMV22F. 1 aTVL2F. 1 बTEL16

JMV22F. 1 aTEL13 aTEL16

OI GACATCCAGA g-a--tgtgt \begin{tabular}{rrr}
110 \& 120 \& 130

CCTGGTTICA \& GCAGAAACCA \& GGGAAAGCCC

\hline AT--A-- \& 210 \& 220

\& \& 230

TGGGACAGAT \& TTCACTCTCA \&

\hline

110 \& 120 \& 130

CCTGGTTICA \& GCAGAAACCA \& GGGAAAGCCC

\hline AT--A-- \& 210 \& 220

\& \& 230

TGGGACAGAT \& TTCACTCTCA \&

\hline

110 \& 120 \& 130

CCTGGTTICA \& GCAGAAACCA \& GGGAAAGCCC

\hline AT--A-- \& 210 \& 220

\& \& 230

TGGGACAGAT \& TTCACTCTCA \&

\hline
\end{tabular}

오
CTGTCTGCAT
30
тССАТССТСА
20
tGACCCAGTC
----g----

	10	20	30	40	50	60	70	80	90	100
HK137	GACATCCAGA	TGACCCAGTC	TCCATCCTCA	CTGTCTGCAT	CTGTAGGAGA	CAGAGTCACC	ATCACTTGTC	gGGCGAGTCA	gGGCATTAGC	AATLATTTAG
-TEL9	g-a--tgtgt	--g-----	--C				--C-	-A--	-A	-C----A
	110	120	130	140	150	160	170	180	190	200
HK137	CCTGGTTTCA	GCAGAAACCA	GGGAAAGCCC	CTAAGCTCCT	GATCTATGCT	GCATCCAGTI	TGCAAAGTGG	GGTCCCATCA	AGGTTCAGCG	GCAGTGGATC
-TEL9	AT---A---					-C--				
	210	220	230	240	250	260	270	280		
HK137	TGGGACAGAT	TTCACTCTCA	CCATCAGCAG	CCTGCAGCCT	GAAGATTTTG	CAACTMTATTA	CTGCCAACAG	tatatagit	ACCCT	
<TEL9			-A			-	T--T----	AC---C--	TT--G	

 Llewelyn, J. D. Marks, I. M. Tomlinson, G. Walter \& G. Winter, unpublished results; VH1-9III: Berman et al. (1988); VH251: Sanz et al. (1989); IgLV3S1: Frippiat et al. (1990); HK137: Bentley \& Rabbitts (1983). Nucleotide and protein sequences have been deposited with the European Molecular Biology Library (accession numbers X61640 to X61651 inclusive). phOx-binding phage with a Clackson et al. (1991) that had been isolated in the same laboratory, and presumably arose from contamination during the library construction. This demonstrates the importance of completely

[^3]Table 5
V-gene family, germline derivation and extent of somatic hypermutation of antigen-specific clones isolated from unimmunized libraries

Clone	$V_{\text {H }}$			$V_{\text {L }}$		
	Family	Germline gene	Differences from germline	Family	Germine gene	Differences from germline
$\alpha \mathrm{BSA} 3$	$V_{\text {H3 }}$	VH1.91II	0	V_{23}	IGLV3S1	0
<phOx 15	$\mathrm{V}_{\mathrm{H} 1}$	VH380.6	4	$V_{\lambda 1}$	JMV\IA	7
α TEL9	$\mathrm{V}_{\mathrm{H} 4}$	U514A (U514G)	<22	$V_{x 1}$	HK137	<20
α TEL14	$\mathrm{V}_{\mathrm{H} 4}$	U4.H	<19	V_{23}	[GLV3S]	<10
α TEL13	$V_{\text {H5 }}$	VH251	11	V_{12}	JMV 22 F	<31
<TEL16	$\mathrm{V}_{\mathrm{H} 5}$	VH251	18	$\mathrm{V}_{\lambda 2}$	[MV 22 F	<38

α BSA3, bovine serum albumin binder; α phOx15, 2 -phenyl-oxazol-5-one binder; α TEL $9, \alpha$ TEL13, α TEL14 and α TEL16, turkey egg lysozyme binders. References for germline genes: see Table 4.

(d) Protein purification and binding affinity

Soluble scFv α TEL 9 was purified in one step on a TEL-Sepharose column or via its c-myc peptide tag on a 9E10 antibody column (Fig. 5). Soluble scFv $\alpha \mathrm{phOx} 15$ was purified in one step on a 9 E 10 column (Fig. 5). Typical yields were $2 \mathrm{mg} / \mathrm{l}$ after purification on 9 E 10 and 5 to $10 \mathrm{mg} / \mathrm{l}$ after purification on an antigen column. The dissociation constant of the α TEL9 scFv was $86(\pm 61) \mathrm{nm}$ and the dissociation constant of the $\alpha \mathrm{phOx} 15 \mathrm{scFv}$ was $534(\pm 72) \mathrm{nm}$. The high standard error observed for the dissociation constant of α TEL 9 has been observed for hen egg lysozyme binding antibodies using this technique. However, equilibrium constants obtained by fluorescence quench titration are consistent with those deduced by the more precise pseudo-equilibrium relaxation method (J. Foote \& G. Winter, unpublished results). Finally, soluble α TEL 9 scFv could be used to detect lysozyme ($1 \mu \mathrm{~g}$) in a Western blot (data not shown).

4. Discussion

We used a phage display library utilizing V-gene repertoires to isolate antibody fragments of reasonable affinity against three different (foreign) antigens. The two donors were unimmunized, and their serum IgM antibodies did not appear to bind to the antigens TEL or phOx-BSA as there was no difference in signal intensity in wells coated with antigen compared with control wells not containing antigen. Furthermore most of the VH genes of the binders derive from the IgM (naive and primary response B-cells) rather than the IgG mRNA (secondary response B-cells). Each of the heavy and light chain pairings in Table 5 is unique and contrasts with the promiscuous pairings (in which one chain is associated with more than one partner) noted in libraries from the IgG mRNA from immunized animals (Clackson et al., 1991; Caton \& Koprowski, 1990; Persson et al., 1991). Therefore, the library appears to be naive with respect to these antigens.

A recent attempt to isolate human antibodies from an unimmunized donor using a λ phage
random combinatorial library failed (Persson ot al., 1991). The library (10^{6} members) was constructed from IgG mRNA using only PCR primers for $V_{H 1}$, $V_{H 3}, V_{\kappa 1}$ and $V_{\kappa 3}$ gene families and was screened for antigen binding using nitrocellulose filters. However, library size, diversity and binding threshold determine the chances of isolating binders. The probability (p) that an epitope is not recognized by at least one antibody in a library depends on the probability $(p \mid K])$ that an individual antibody recognizes a random epitope with an affinity above a threshold value ($[K]$) and on the number of different antibodies (N) according to the equation $p=\mathrm{e}^{-N p[K]}$ (Perelson, 1989).

We attempted to maximize the size of the library by using a pUC-based phagemid (Hoogenboom et al., 1991) that has higher transformation efficiencies than fd vectors. Indeed our library sizes (10^{7} to 10^{8} members) were at least an order of magnitude greater than with phage fd (Clackson et al., 1991). We also attempted to maximize diversity by using primers optimized for each V-gene family, as well as utilizing IgG and $\operatorname{IgM} \mathrm{mRNA}$ and both κ and λ light chains. The V_{H} genes of the binders belong to four different families (V_{H} families $1,3,4$ and 5), as do the light chain genes (V_{i} families 1,2 and 3 , and V_{k} family 1). Furthermore, most (5/6) of the binders were derived from the IgM mRNA, perhaps reflecting the greater diversity of $\mathrm{V}_{\mathbf{H}}$ genes. Indeed the only binder from the IgG mRNA (α TELI 16) had the poorest binding affinity and/or decreased expression and was barely detectable by ELISA.

The chances of finding a phage with binding activity also depend on its affinity and the efficiency and number of rounds of selection. Both phage (McCafferty et al., 1990; Scott \& Smith, 1990) and phagemid (Hoogenboom et al., 1991; Bass et al., 1990) vectors have been used to display peptide or protein fusions with g3p. The phage vectors allow three copies of the g3p fusion protein on each phage particle (Claser-Wuttke et al., 1989), whereas the g3p fusion protein encoded by phagemid vectors has to compete with the g 3 p of the helper phage for incorporation into the phagemid particle. Although phage vectors should permit isolation of a greater
number of binders, by virtue of the avidity of binding of the multivalent antibody heads, many will have poor affinities. To enrich for the higheraffinity antibodies, we used phagemid vectors. We noted lower selection efficiencies with phagemid (50 -fold/round), compared to 675 to 1000 -fold per round for phage vectors (Clackson et al., 1991; McCafferty et al., 1990). We found that three or four rounds of selection were required to isolate the binders, and estimate that only one or two copies of each were present in the original library of 3×10^{7} members.

The binders utilize both germline and mutated V-genes. Most of the differences are likely to have arisen as a result of somatic mutation of the V-genes in the original B-cells, but some may have arisen during the PCR amplification and assembly process. Indeed the heavy chain of α TEL 9 may have arisen from a cross-over during PCR amplification between rearranged V_{H}-genes from two highly related germline genes U514A and U514G (Table 4). Surprisingly, most of the binders (5/6) utilized V_{i} rather than V_{κ} genes despite their equal representation in the unselected library. However, human hybridomas prepared by EBV immortalization oflen secrete TgM and λ chains (Thompson et al., 1991), and during maturation of the immune response, the repertoire may shift from $\operatorname{IgM}, \lambda$ antibodies to IgG, κ (Thompson et al., 1991; J. Bye, N. Hughes-Jones, J. D. Marks \& G. Winter, unpublished results).

By using phagemid vectors we can mimic the switch of antibody from its display on B-cells to its secretion by plasma cells. By interposing a stop codon hetween the antibody and g3p, the antibody fragments can be switched between surface display, or secretion as a soluble fragment from bacteria, by growth in suppressor or non-suppressor strains of bacteria (Hoogenboom et al., 1991). The affinities of two of the soluble antibody fragments $\alpha \mathrm{phO} 15$ and α TEL9, prepared in this way, as determined by fluorescence quench ($K_{\mathrm{a}}=2 \times 10^{6} \mathrm{~m}^{-1}$ and $10^{7} \mathrm{~m}^{-1}$, respectively), appear similar to those of human IgM antibodies derived from PBLs after immunization. For example the affinities of human IgM antibodies directed against rhesus D antigen, and made by EBV immortalization of PBLs from immunized donors lie in the range of $10^{7} \mathrm{~m}^{-1}$ (Hughes-Jones \& Gorick, 1991).

The antibody fragments isolated from the library are also highly specific (Fig. 4) to the antigen used in panning. For example, those fragments isolated using TEL did not bind to a range of other protein antigens, including hen egg white lysozyme that differs by only seven amino acids (Imoto et al., 1972). The monovalent α TEL 9 fragment could even be used in Western blotting but the sensitivity ($1 \mu \mathrm{~g}$ TEL) was poor

Although we can make human antibodies with reasonable affinity and specificity, a yet more diverse and large library should enable the isolation of even higher-affinity antibodies (Perelson, 1989). For example, the rearranged V_{H} genes would reflect
more the naive B -cell repertoire if they had been prepared from the mRNA of membrane-bound IgM or $\operatorname{Ig} D$ (for example, by basing primers for cDNA synthesis in the membrane anchor region). Other diverse libraries might be constructed by assembling unrearranged V-genes with synthetic D and J elements, or by assembling diverse antigen binding loops on a common structural framework (Milstein, 1990). Larger libraries could be made by improving transfection and ligation efficiencies and by scaleup, or by encoding repertoires of light chains on one vector and heavy chains on another (Hoogenboom et al., 1991).

Alternatively higher-affinity antibodies might be made by mutating the binders and selecting those with improved affinity (Winter \& Milstein, 1991). Point mutants could be made in a variety of ways; for example, using an error-prone polymerase (Liao \& Wise, 1990), spiked oligonucleotides (Hermes et al., 1989), or growth of the phage in mutator strains of bacteria (Schaaper, 1988; Yamagishi et al., 1990). For more extensive variation, artificial cross-overs could be induced with related genes using the polymerase chain reaction (Meyerhans et al., 1990), or light or heavy chains replaced by repertoires (Clackson et al., 1991). Selection of antibodies on phage according to affinity has demonstrated that, for example, high-affinity binding phage ($10^{8} \mathrm{~m}^{-1}$) can be fractionated 10^{4}-fold with respect to lowaffinity phage ($10^{5} \mathrm{~m}^{-1}$) using only two rounds of selection (Clackson et al., 1991). By using several rounds of selection and adjusting the coating density of the antigen used for panning, it is also possible to select between phages bearing antibodies that are much closer in affinity. However, phagemid vectors leading to display of only a single copy of the antibody on the surface of the phage are preferable for selection between phages with closely related affinities when using antigen immobilized on solid phase (T.P.B. \& G.W., unpublished results).

For making high-affinity antibodies, phage display libraries built from the spleen mRNA of hyperimmunized animals (Clackson et al., 1991), or PBL mRNA of deliberately immunized humans remain attractive. However, immunization is often difficult, and new libraries have to be constructed for each antigen. In contrast, a single library made without immunization may provide a rich source of antibody specificities, including those directed against "naive" antigens (as described above), common pathogens or self antigens. For example, from the same library as above, we have isolated specificities directed to human blood group B, human tumour necrosis factor- α, and a human monoclonal antibody (our unpublished results). We propose the term "natural" libraries for those derived from unimmunized donors, and envisage that human antibodies of many specificities will be made in the future by panning a single large natural phage display library with antigen.

We thank R. Pannell for 9E10 antibody, M. Hobart for the sheep anti-M13 antibody, and W. Ouwehand and
C. Milstein for advice and encouragement. J.D.M. was supported by the Medical Research Council AIDS directed program, H.R.H. by the D. Collen Research Foundation, Leuven, and the European Molecular Biology Organization, and A.D.G. by the Cancer Research Campaign. T.P.B. was the recipient of a Medical Research Council studentship.

References

Bass, S., Greene, R. \& Wells, J. A. (1990). Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins, 8, 309-314.
Bentley, D. L. \& Rabbitts, T. H. (1983). Evolution of immunoglobulin V genes: evidence indicating that recently duplicated human V sequences have diverged by gene conversion. Cell, 32, 181-189.
Berman, J. E., Mellis, S. J., Pollock, R., Smith, C. L. Suh, H., Heinke, B., Kowal, C., Surti, U., Cantor, C. R. \& \& Alt, F. W. (1988). Content and organization of the human IgVH locus: Definition of three new VH families and linkage to the Ig CH locus EMBO J. 7, 727-738.
Buluwela, L., Foster, A., Boehm, T. \& Rabbitts, T. H. (1989). A rapid procedure for colony screening using nylon filters. Nucl. Acids Res. 17, 452.
Carter, P., Bedouelle, H. \& Winter, G. (1985). Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucl. Acids Res. 13, 4431-4443.
Cathala, G., Savouret, J., Mendez, B., West, B. L., Karin, M., Martial, J. A. \& Baxter, J. D. (1983). A method for isolation of intact, transcriptionally active ribonucleic acid. $D N A, 2,329-335$.
Caton, A. J. \& Koprowski, H. (1990). Influenza virus hemagglutinin-specific antibodies isolated from a combinatorial expression library are closely related to the immune response of the donor. Proc. Nat. Acad. Sci., U.S.A. 87, 6450-6454.
Clackson, T., Iloogenboom, II. R., Griffiths, A. D. \& Winter, G. (1991). Making antibody fragments using phage display libraries. Nature (London), 352, 624628.

DeBellis, D. \& Schwartz, I. (1990). Regulated expression of foreign genes fused to lac: control by glucose levels in growth medium. Nucl. Acids. Res. 18, 1311.
Dower, W. J., Miller, J. F. \& Ragsdale, C. W. (1988). High efficiency transformation of E. coli by high voltage electroporation. Nucl. Acids Res. 16, 6127-6145.
Eisen, H. N. (1964). Determination of antibody affinity for haptens and antigen by means of fluorescence quenching. Methods Med. Res. 10, 115-121.
Foote, J. \& Milstein, C. (1991). Kinetic maturation of an immune response. Nature (London), 352, 530-532.
Frippiat, J. P., Chuchana, P., Bernard, F., Buluwela, L. Lefranc, G. \& Lefranc, M. P. (1990). First genomic sequence of a human Ig variable lambda gene belonging to subgroup III. Nucl. Acids Res. 18, 7134.
Gibson, T. J. (1984). Studies on the Epstein-Barr virus genome. Ph.D. thesis, University of Cambridge.
Glaser-Wuttke, G., Keppner, J. \& Rasched, I. (1989) Pore-forming properties of the adsorption protein of filamentous phage fo. Biochim. Riophys. Actn, 985, 239-247.
Güssow, D. \& Clackson, T. (1989). Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucl. Acids Res. 17, 4000.
Harlow, E. \& Lane, D. (1988). Antibodies-A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

Hermes, J. D., Parekh, S. M., Blacklow, S. C., Koster, H \& Knowles, J. R. (1989). A reliable method for random mutagenesis: the generation of mutant libraries using spiked oligodeoxyribonucleotide primers. Gene, 84, 143-151.
Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P. \& Winter, G. (1991). Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acids Res. 19, 4133 4137.

Hughes-Jones, N. C. \& Gorick, D. B. (1991). Multiple epitopes recognized by human monoclonal IgM antiD antibodies. Vox Sanguinis, 59, 112-115.
Huse, W. D., Sastry, L., Iverson, S. A., Kang, A. S., Alting, M. M., Burton, D. R., Benkovic, S. J. \& Lerner, R. A. (1989). Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science, 246, 1275-1281.
Huston, J. S., Levinson, D., Mudgett, H. M., Tai, M. S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Harer, E., Crea, R. \& Oppermann, H. (1988). Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Nat. Acad. Sci., U.S.A. 85, 5879-5883.
Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C. \& Rupley, J. A. (1972). Vertebrate lysozymes. The Enzymes, Academic Press, New York and London.
Kang, A. S., Barbas, C. F., Janda, K. D., Benkovic, S. J. \& Lerner, R. A. (1991). Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc. Nat. Acad. Sci., U.S.A. 88, 4363-4366.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680-685.
Larrick, J. W., Danielsson, L., Brenner, C. A., Abrahamson, M., Fry, K. E. \& Borrebaeck, C. A. (1989). Rapid cloning of rearranged immunoglobulin genes from human hybridoma cells using mixed primers and the polymerase chain reaction. Biochem. Biophys. Res. Commun. 160, 1250-1256.
Liao, X. B. \& Wise, J. A. (1990). A simple high-efficiency method for random mutagenesis of cloned genes using forced nucleotide misincorporation. Gene, 88. 107-111.
Mäkelä, O., Kaartinene, M., Pelkonen, J. L. T. \& Karjalainen, K. J. (1978). Inheritance of antibody specificity. Anti-2-Phenyloxazolone in the mouse. J. Exp. Med. 148, 1644-1660.

Marks, J. D., Tristrem, M., Karpas, A. \& Winter. G. (1991). Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21, 985-991.
McCafferty, J., Griffiths, A. D., Winter, G. \& Chiswell, D. J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature (London), 348, 552-554.
Meyerhans, A., Vartanian, J. P. \& Wain, H. S. (1990). DNA recombination during PCR. Nucl. Acids Res. 18, 1687-1691
Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Milstein, C. (1990). The Croonian lecture, 1989. Antibodies: a paradigm for the biology of molecular recognition. Proc. Roy. Soc. Lond. Biol. 239, 1-16.

Mullinax, R. L., Gross, E. A., Amberg, J. R., Hay, B. N., Hogrefe, H. H., Kubitz, M., Greener, A., Alting, M. M., Ardourel, D., Short, J. M. \& Shopes, R. (1990). Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage lambda immunoexpression library. Proc. Nat. Acad. Sci., U.S.A. 87, 8095-8099.
Munro, S. \& Pelham, H. R. B. (1986). An Hsp-like protein in the ER: identity with the 78 kD glucose regulated protein and immunoglobulin heavy chain binding protein. Cell, 46, 291-300.
Orlandi, R., Güssow, D. H., Jones, P. T. \& Winter, G. (1989). Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Nat. Acad. Sci., U.S.A. 86, 3833-3837.
Parmley, S. F. \& Smith, G. P. (1988). Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene, 73, 305-318.
Perelson, A. S. (1989). Immune network theory. Immunol. Rev. 110, 5-36.
Persson, M. A. A., Caothien, R. H. \& Burton, D. R. (1991). Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc. Nat. Acad. Sci., U.S.A. 88, 2432-2436.
Roit, I. M., Brostoff, J. \& Male, D. K. (1985). Immunology. Gower Medical Publishing Ltd, London.
Sambrook, J., Fritsch, E. F. \& Maniatis, T. (1990). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Sanger, F., Nicklen, S. \& Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci., U.S.A. 74, 5463-5467.
Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. \& Capra, J. D. (1989). The smaller human VH gene families display remarkably little polymorphism. EMBO J. 8, 3741-3748.
Schaaper, R. M. (1988). Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: role of DNA
mismatch repair. Proc. Nat. Acad. Sci., U.S.A. 85, 8126-8130.
Schibler, U., Marcu, K. B. \& Perry, R. P. (1978). The synthesis and processing of the messenger RNAs specifying heavy and light chain immunoglobulins in MPC-11 cells. Cell, 15, 1495-1509.
Scott, J. K. \& Smith, G. P. (1990). Searching for peptide ligands with an epitope library. Science, 249, 386390.

Smith, G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315-1317.
Songsivilai, S., Bye, J. M., Marks, J. D. \& Hughes, J. N. (1990). Cloning and sequencing of human lambda immunoglobulin genes by the polymerase chain reaction. Eur. J. Immunol. 20, 2661-2666.
Thompson, K. M., Sutherland, J., Barden, G., Melamed, M. D., Randen, I., Natvig, J. B., Pascual, V., Capra, J. D. \& Stebenson, F. K. (1991). Human monoclonal antibodies against blood group antigens preferentially express a $\mathrm{VH} 4 \cdot 2 \mathrm{I}$ variable region geneassociated epitope. Scand. J. Immunol. 34, 509-518.
Towbin, H., Staehelin, T. \& Gordon, J. (1979). Electrophoretic transfer of proteins from the polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Nat. Acad. Sci., U.S.S. 76, 4350-4354.
Ward, E. S., Güssow, D., Griffiths, A. D., Jones, P. T. \& Winter, G. (1989). Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature (London), 341, 544546.

Winter, G. \& Milstein, C. (1991). Man-made antibodies. Nature (London), 349, 293-299.
Yamagishi, J., Kawashima, H., Matsuo, N., Ohue, M., Yamayoshi, M., Fukui, T., Kotani, H., Furuta, R., Nakano, K. \& Yamada, M. (1990). Mutational analysis of structure-activity relationships in human tumor necrosis factor-alpha. Protein Eng. 3, 713-719.

Edited by J. Karn

[^0]: \dagger Author to whom all correspondence should be addressed.
 \ddagger Abbreviations used: PBL, peripheral blood lymphocyte; Ig, immunoglobulin; PCR, polymerase chain reaction; g3p, gene 3 protein; ELISA, enzymelinked immunosorbent assay; BSA, bovine serum albumin; TEL, turkey egg-white lysozyme; t.u., transducing unit(s); p.f.u., plaque-forming units(s): IPTG, isopropyl β-d-thiogalactopyranoside.

[^1]: Panning, antigen coated on Petri dish; columns, antigen covalently linked to Sepharose column; IgM library, single chain Fv library

[^2]: FR．framework region：（IDR．complementarity－determining region．

[^3]: $\stackrel{\text { sequencing all antibody constructs. }}{\dagger} \boldsymbol{\alpha}$. 9 appears to be derived partially from germline genes U514A and U514G, suggesting that it is a result of PCR cross-over between 2 highly related V_{H} s.

