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Interlocking timescales

Celiker et al.
or: how ecology affects evolution

Braakman et al.
or: how evolution affects ecology

Vetsigian
or: how interlocking timescales effect 

even more emergent patterns



Celiker 
et al.

 How ecology 
affects evolution

 Wet lab

 6-species bacterial 
ecosystem 
evolution

 96 parallel 
replicates, ~400 
generations



Methods (1) (Celiker et al.)

 6 Bacterial species
 No aggressive antagonization (e.g. no predation)

 Partially overlapping carbon utilization profiles

 Ancestral communities

 Isolated evolution
 Strains evolved in isolation for ~400 generations, then 

mixed on agar

 Multispecies evolution
 Strains mixed and plated together for ~400 

generatiosn



Methods (2) (Celiker et al.)

Fig 2. Evolution experiment design.



Results (1) (Celiker et al.)

Fig. 3 clustered stacked area plots of raw 
relative abundance

Ancestor Isolated Multispecies



Results (2) 
(Celiker et al.)

Results were 
clustered in k clusters

k with the highest 
Calinski-Harabasz index 
was selected 

i.e. the highest inter- 
to intracluster variation.

K=4 for mixed evo

K=2 for isolation

Fig. 4 consensus clustering 
results (trimmed)



Results (3) (Celiker et al.)

 Only limited evolutionary pathways

 Available pathways are shaped by ecology

 Clusters are the result of dominance of driver species

 Single species discovers a competitively advantageous 
mutation, changing the ecological landscape

 Pseudomonas putida (PP) abundance fell to 
negligible levels in ancestral and isolated 
communities

 In one cluster of mixed evo, PP became dominant 
driver species instead



Discussion (Celiker et al.)

 Experiment might have been too short
 “Unique” clusters might converge to single 

point over longer timescales

 Compare “Virtual Microbe” experiments
 Sometimes an alternative trajectory is just an 

alternative trajectory



Braakman 
et al.

 How evolution affects ecology

 Reconstruction of 
Procholorococcus marine 
cyanobacterium metabolism

 Metabolism can create new 
ecological niches

 Emergent mutualism



Methods (1) 
(Braakman et 
al.)

 Procholorococcus 
strains exist 
phylogenetically 
ordered in vertical 
ocean strata

 Newer clades are 
in high-sunlight, 
low-nutrient upper 
strata

 Changes to the 
metabolic core of 
Prochlorococcus 
were reconstructed Fig. 1 typical relative 

abundance distribution of 
Prochlorococcus ecotypes 
and resources



Methods (2) (Braakman et 
al.)

 High Light Prochlorococcus has higher 
photosynthetic capacity, but leaks organic 
carbon compounds
 Carbon compounds as redox outlet?

 Public goods dilemma?
 Why not just reduce electron flux capacity instead?

 Expression assay shows malate uptake 
pathway activates at night
 Potential mutualism?



Results (1) (Braakman et al.)

 Newer strains have higher electron flux density 

 More photodamage repair mechanisms

 Newer strains also have lower nutrient flux density 

 By decreasing growth rate

 By decreasing N and P usage of the genome

 By decreasing N-rich amino acid use

 By swapping P-lipid to sulfolipid membranes

 By decreasing Fe use in photosynthetic machinery

 Summarized:  ratio increases in newer strains

  



Results (2) (Braakman et al.)

 Plugging in simplified Michaelis-Menten kinetics 
(above) under strong nutrient limitation:

 High  = high max nutrient handling rate

 Free energy costs for nutrient uptake can become 
very large if the inside-outside gradient is not 
reduced

 Mechanisms exist for ATP/ADP ratios to decrease this 
gradient

 Ex. High ATP/ADP ratios mean low internal Pi 

concentrations, reducing the P-gradient

 Similar mechanisms for N

  



Results (3) (Braakman et al.)

 Aforementioned kinetics can be used to 
calculate , which is the minimal nutrient density 
for non-negative growth → high  helps lower 

 However, to avoid ADP-limitation, ATP use must 
be increased to help handle increased 
metabolic load

 Carbon is a good sink

 BUT: growth limited, and high  strains have low growth

 Solution: dump organic carbon

  



Results (4) 
(Braakman et al.)

Ecological effects 

of evolution:
 New nutrient efficient ecotypes decrease 

nutrients in higher strata, and push older 
ecotypes down

 Free organic carbon is a good opportunity 
for heterotrophs
Low efficiency, high metabolic rate



Discussion (1) (Braakman et 
al.)

 Emerging mutualism

 Heterotrophs that feed Prochlorococcus have an 
advantage: SAR11 might feed malate

 Prochlorococcus depends on heterotrophs to detoxify 
the HOOH its photosystems create

 Parallels to plant evolution

 coccus is the chloroplast, SAR11 the mitochondrion, other 
heterotrophs (SAR86, SAR116?) the liposome

 “Black queen” dynamics: evolutionary race that pulls 
everyone towards higher total biomass



Discussion (2) (Braakman et 
al.)

 Post-hoc explanation

 Sensitive to human pre- and misconception

 “Reasonable” metabolic model

 Feasibility needs to be verified



Vetsigian
 Eco-evo interplay

 Organisms create ecological niches

 Bacterial antibiotic 
production/resistance/degradation model 
shown stable, but is it evolutionarily reachable?



Methods (1) 
(Vetsigian)

 Three phase 
life cycle:
 Sporulation to 

random 
locations

 Growth 
(homogenous 
speeds)

 Resource 
competition

Fig. 1 Model overview



Methods (2) (Vetsigian)

 Bacteria have a one-dimensional affinity for 
antibiotics

 (D) Degraders are resistant at constant + unit cost

 (S) Sensitives are just that

 (R) Resistant pay constant + unit cost for operation of 
an efflux pump

 (P) Producers pay constant + unit cost for production 
and operation of an efflux pump

 Possible mutations were parameter size shifts 
(“point mutations”) as well as loss of function 
(any→S) and global (any→any) mutations



Results (1) (Vetsigian)

 For one dimensional experiment, 
evolutionary stable communities were all of 
the [D, S, P] motif

 Two-dimensional experiments had only 
combinations of this motif as evo stable 
communities [SS, SD, DS, PS, SP] [DD, SD, DS, 
PS, SP]

 Eco-evo patterns where explored, and most 
strikingly varied with Resistance/Efflux 
constant cost 



Results (2) (Vetsigian)

Fig. 4 Eco-evo regimes



Discussion (Vetsigian)

 Intermittent regimes might not 
need external destabilization, but 
might be an effect of eco-evo 
dynamics

 Low Cr regimes were eco-evo 
stable, but ecologically unstable

 Only loss of function mutations 
required for stability

Fig. 2b phase portrait of 
ecological dynamics



Discussion (2) (Vetsigian)

Consistent with earlier eco-evo 
simulations
Mutations needed for ecological 

stability

Another example of speciation 
“without predefined ecological 
niches”
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