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Long term evolution experiment (LTEE)

e Started in 1988 by Richard Lenski

e 12 cultures
o E.coli

e Periodic environment
o 24 hour cycle (6,6 new generations per day)
o Batch culture

e 1% is transferred to a new medium after every cycle
e 99% is frozen and stored for future research capabilities
e ~66.000 generations in November 2016



Population dynamics

Fitness increase
o rate of increase declines

6 Non-mutators

o Mutation speed comparable to bacteria

6 Mutators

o Some become non mutators after evolution
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Ara-2

e Mutator culture

e Emergence of 2 lineages L and S LB
o ~6500 generations = Good et a., 20;7
o A large glucose-feeding population
o A small glucose and acetate-feeding population

e Acetate is a byproduct of glucose usage



evoFBA, to model adaptive diversification
(GrolRkopf et al., 2016)

e FBA (as discussed in course)
o Flow of metabolic pathway is calculated according to specific flux formulas and reactions

e 15 mutable targets

o Evolution of uptake and reaction
o Constraint on optimal uptake, forced trade-off

e Mutation rate: 10*-6 per model cell per generation
e Similar conditions to LTEE



evoFBA, to model adaptive diversification
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evoFBA, to model adaptive diversification

e [wo metabolic clones evolved

e Evolved metabolic pathways

o A =glucose metabolism in glucose environment
o B = glucose metabolism in acetate environment
o C = acetate metabolism in glucose environment
o D = acetate metabolism in acetate environment

e Clear difference in reaction between the
clones in the two circumstances
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Adaptive diversification

Diversification is comparable to the in vitro ara-2 situation

Furthermore, experimental results show that L and S population dynamics are

similar to the dynamics of these in silico models, when exposed to a changing
environment.



evoFBA issues

e They define an overall constraint on uptake rates to enforce trade-off
o Decreases the degrees of freedom

o Possible different solution is adding toxicity to the metabolic system

e Cross-feeding results are always stable, as opposed to LTEE
o Explanation given is that stability might still happen in the LTEE

e Not enough evolvability of the model



2 .
Evo“Sim
(A) Genotype-to-phenotype mapping
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Genome structure

e Coarse-grained genome
o Protein coding (E), Non-coding (NC), Promoter(+)

() A

e Functional regions

o Promoter followed by one or multiple E’s 4 &
e Mutations \

o Enzymatic kinetics
o Unit type change (10%-3 per unit per replication) ~—
o Rearrangements

Circular single strand
enome
Roca%ert etal., 2017



Metabolic network

Pumps and enzymes

Essential metabolites
o Define ‘score’ of cells

Lethal toxicity threshold
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Environment

e Batch culture or chemostat

e Diffusing metabolites
o Degradation rate

e Uptake and release by cells
o Metabolites are released at death

e Cells can only divide once per timestep

(B.2)

Metabolite
influx mep

(B.1)
Diffusion El /
\ gip |

At death, cytoplasm
content is released

Population

I I I Degradation

Environment | and/or

Rinse

Diffusion on the grid

]

gap

-

Daughters share @
Rocab&i{ &'&7T2017

pap

gap | gap|

Roulette wheel
selection




Evo2Sim

In silico evolution of batch culture can lead to stable coexistence of 2 cross-feeding populations
(A) Periodic environment
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Adaptive diversification

The evolution of different types of organisms under the effects of evolutionary forces such as
selection and mutation

Possible influencing factors:

Clonal interference

Negative frequency-dependent interactions
Genetic background

Seasonality



Clonal interference

Beneficial mutation outcompeted by other, more beneficial mutations
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Separation of timescales

Inter-clade fixations

Intra-clade fixations
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Negative frequency dependent interaction

e Short term competition experiment

e Acetate ecotype B favored when frequency low and penalized when abundant
Ecotype B relative log-fithess
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Negative frequency dependent interaction

Relative frequencies of A and B should stabilize over time

Observed in the LTEE dynamics

Influence of cross-feeding

Ecotype B frequency
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Genetic background

Steps in emergence of the S population:

1. Mutation in spoT increases overall fithess
2. Mutation in acs promotor and arcA

3. Increase in transcription of acs, acnB and aceB
a. Genes needed for acetate consumption

4. Mutation in gntR contributes to the ability of the S lineage to invade the L
population via a negative frequency-dependent interaction



Importance of genetic background

e The effect of introducing arcAS was different in cells with a different genetic
background

e The evolved arcAS allele conferred S-specific traits only in the S-evolved

background
o Importance of epistatic interactions



Occurence of early and late evolving genes
o Opening of new evolutionary paths by earlier mutations

Generation, ¢ Generation, (

Good et al., 2017
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Seasonality

e Evo’Sim

e MRCA age reflects the stability of a polymorphism

e Deepest trees in periodic environment
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Seasonality

Stability of interaction when placed in different environment

Early populations not robust; 6% persists

Later populations more robust; 50% persists

Rocabert et al., 2017
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Conclusion

Negative frequency-dependent interactions, seasonality and genetic background
are essential for adaptive diversification of E. coli in culture, leading to the
emergence of stable coexistence

Clonal interference does not appear to be important for adaptive diversification. It
could, however, be an explanation for the appearance of non-stable coexistence
as observed in the LTEE
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