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Abstract—In this paper we explore the influence of the dynamics of evolution on coding structures of
sequences. We show that, in systems with crossover, high mutation rates cause the most conserved
subsequences to be preferentially used as recognition sites for newly evolving sequences. In other words:
“multiple coding™ evolves in these systems. Multiple coding often does not increase the fitness of the
population; nevertheless it is selected. By contrast, in systems without crossover, a low mutation rate
causes multiple coding to be avoided, so that only single coding evolves. Again this “‘choice™ is not
reflected in the fitness of the population, but is dictated by the evolutionary dynamics. We conclude that
the genetic operator crossover turns evolutionary processes in pattern detectors rather than optimizers.

1. INTRODUCTION

1.1. Evolution and the analysis of biomolecular se-
quences

DNA and RNA sequences contain a wealth of
traces of the evolutionary processes by which they are
shaped, hence cvolutionary considerations play an
important role in the informatic analysis of biomolec-
ular sequences. On the one hand much work in
computational molecular biology is concerned with
reconstructing evolutionary pathways (phylogenies)
on the basis of patterns of variation in sequences, and
on the other hand the evolutionary history of se-
quences is used to unravel the functional significance
of subsequences. Sequences which are similar in a
variety of organisms are called “conserved” and are
supposed to “code” for certain functions. Moreover,
assumed conservation of secondary and tertiary
structures of RNA and protein sequences is used in
the prediction of these higher order structures from
primary sequences.

In most research concerned with molecular se-
quences and evolution the observed molecular se-
quences are taken as a starting point for the
investigations, and ‘“conservation” and (random)
“diversification in time” are the properties of evol-
utionary processes used in the analysis of the se-
quences; this analysis may lead to inferences about
the evolutionary process. In this paper we will report
on research which proceeds in the opposite direction:

* The preliminary version of this work was presented during
the Open Problems in Computational Molecular Biology
Workshop, Telluride Summer Research Center, Tel-
luride, CO, 2-8 June 1991.
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we start by defining a (simple) evolutionary process
and investigate the patterns in the coding structure of
the (artificial) sequences it generates; these patterns
can be used to “debug’’ our ideas about evolutionary
processes, and may serve as “search images™ for the
analysis of molecular sequences.

1.2. Coding structure of sequences

The term ““coding structure of sequences™ refers to
the arrangement of “codes’ in the sequence, using the
work ‘““code” in the meaning: a pattern which is
recognized by some part of the system under con-
sideration, such that the subsequent behaviour of that
subsystem is determined by the recognition. Possible
coding structures are: ‘“‘one to one” or “single”
coding: ong recognition site is used for one process,
and the process has no alternative recognition sites;
“many to one” coding: various recognition sites are
used for the same (or similar) processes; ‘“one to
many” or “multiple” coding: the same (or overlap-
ping) subsequences are used as the most crucial
recognition site(s) for several processes. (Note that
“DNA makes RNA makes protein™ implies that the
same sequence is involved in multiple processes and
thus should harbour codes for these processes. Tri-
fonov (1989, 1991), Konings er al. (1987), Huynen
et al. (1992) emphasized this phenomenon under the
heading “multiple coding” or “multiple constraints™,
we use here the stronger definition as stated above.

The relationships between evolutionary dynamics
and coding structure can be studied from different
perspectives:

(1) How does the coding structure of sequences
influence evolutionary optimization, i.e. how
does it influence the shape of “fitness landscapes™
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(see e.g. Kauffman and Smith, 1986; Kauffman,
1989; Fontana and Schuster (1987), Fontana
et al., 1989, 1990; Schuster, 1991).

(2) Do evolutionary processes bias the coding struc-
ture and if so, how?

The two questions can be dealt with in combi-
nation (e.g. Kauffman and Johnson, 1991), but at
present we think it useful to study them (also)
separately. So we explore the second type of question
and focus on the circumstances under which evol-
utionary dynamics will tend to generate either single
coding or multiple coding. (Note: our experimental
setup does not allow one to many coding, or other,
more complicated, coding structures.)

Single coding is often assumed to be the default
situation. It seems to be the most efficient coding
structure because it allows for independent optimiz-
ation of each process. Multiple coding is then seen as
hampering evolutionary optimization, which is to be
avoided as much as possible. (“Make the best of a
bad job™.) Nevertheless multiple coding, in the strong
sense defined above, is observed in biotic sequences
and is often striking, One example is the conserved
sites of tRNA: they are conserved in all tRNA (pro-
karyotic and eukaryotic alike) and function in the
transfer process; in eukaryotes the same sites are used
as recognition sites for Pol III, i.e. in transcription.
Moreover, the same sites appear to bind several DNA
binding factors and, in reconstructing the evolution-
ary history of Ul snRNAs, we noted the crucial roles
of again the same sites in the folding of ancestral Ul
molecules (Hogeweg and Konings, 1985). Other ex-
amples include regulation sites (coded in terms of con-
served secondary structure) within the protein coding
region in e.g. Lentiviruses (Saltarelli et al., 1990;
Konings, 1992), and overlapping reading frames in
various viruses. In the experiments we report here, the
tRNA examples may serve as a prototype.

2. METHODS

Our method for studying the problems sketched
above is to define paradigm systems of “evolving
sequences” and to observe the coding structure which
evolves. The paradigm system is not supposed to
match any real system closely, but it tries to study the
consequences of a simple model of evolutionary
dynamics in isolation. In particular, because we want
to study exclusively the informatic constraints the
evolutionary dynamics imposes on the coding struc-
ture of a sequence, we ignore not only the fact that
sequences have physical-chemical properties, but
even make an effort to exclude any implicit non-
evolutionary properties in our experiments. Note that
calling recognition sites ‘‘codes” invites this (odd)
behaviour: the relationship between *code” and
“meaning” is supposed to be an arbitrary convention.
In order not to confuse this paradigm (digital) system
with a “wet” system, its constituent entities will be
denoted with capitals.

QOur evolving GENOME consists of a 4 letter
SEQUENCE which represents two GENEs. GENE-1
(here of length 50) evolves first, and is supposed to
confer fitness (F1) to its GENOME according to its
match on some preassigned (4 letter) SEQUENCE.
This match is weighted, relative to a preassigned
weight vector, which is constructed by assigning a
large weight (in the reported experiments 30) to a
stretch (here of length 10) of adjacent positions, and
by randomly assigning small weights (here between 0
and 5) to all other positions. The stretch represents a
“code” (as defined above) for GENE-1. GENE-2
(here of length 20) evolves later. It is supposed to
need the recognition of the presence of GENE-1 for
its function. Recognition is by matching a subse-
quence to GENE-1. The fitness conferred to the
GENOME depends on the length of the match (LM)
(up to a maximum), i.e. by the HILL function:

_ LM
T K24 LMY

Total fitness of the GENOME is simply the weighted
sum of the fitness of both genes: F=F1+ R x
F2, R =0.5 or varying.

Evolution of the sequences is defined by a simple
“genetic algorithm”; a population of GENOMEs
(population size 100) reproduce and compete. During
reproduction the sequences are subjected to two
“‘genetic operators’”:

F2 K =12.

¢ “mutation”; randomly chosen “letters™ (from the
4 letter alphabet) are put in randomly chosen
positions in the GENOME. Mutation rate (MU)
is defined as the probability of a (next) mutation
taking place in the GENOME under consideration
(i.e. mutations take place until a drawing from a
uniform distribution between 0 and 1 is greater
than MU). Note that a mutation may not change
the letter, or it may be a “‘back mutation”. MU is
varied from 0.1 to 0.85, i.e. between ca 0.1 and 5
mutations per reproduction.

e “Crossover”; if crossover occurs, reproduction is
by 2 GENOMESs and GENE-1 is taken from one
GENOME, GENE-2 from the other one, i.e.
crossover is always between the 2 GENEs, they are
not supposed to be adjacent. Crossover prob-
ability is set to CO = 0 (no crossover) or CO=0.5
{equal probability that the new GENOME is
assembled from one to two parent GENOMESs).

Compstition (selection) takes place through ‘‘non-
survival of the non-fittest” as well as “reproduction
of the fittest”.

e “Non-survival of the non-fittest’’: At every gener-
ation 10 GENOMEs (10% of the population)
decay. Probability of decay is governed by

/F,
X 1/F’
where F, and F; are the fitness of GENOME i or
j and the sum is taken over the entire population.
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e “‘Reproduction of the fittest”: Probability of repro-
duction is likewise governed by F,/I, F; when
crossover occurs two parent GENOMEs are thus
selected to reproduce one offspring.

Note that both selection processes are weak, i.e.
selection is subjected to high noise levels.

In order to exclude influences of particular se-
quences of letters (which greatly determine the prob-
ability of matching (see e.g. Pevzner et gl., 1989)), i.e.
to exclude all implicit “physical properties™, we per-
form our experiments in “pairs of runs” which use the
same (randomly constructed) target SEQUENCE,
weightvector and initial GENOME. In one run of the

(a)

pair the CODE of GENE-1 ( e.g. the high weights)
is located at position 10-20, and in the other run the
CODE is located at position 30-40. We study where
GENE-2 will match GENE-1.
This basic paradigm system is extended in the
following ways:
1. longer and shorter GENOMESs are used.
2. Both GENEs evolve simultaneously.
3. 1-D spatial structure is added by allowing a de-
cayed GENOME to be replaced only by offspring
from adjacent GENOME:s.

4. The ratio of contribution in both GENEs is

varied, starting with a very low contribution of
GENE-2 which is (very slowly) increased.

EVOLUTIONARY HISTORY:

MUTATION-RATE= .65 CROSSOVER-RATE=.5
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Fig. 1(a)—legend on p. 175
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We will report mainly on the basic model, but will
refer to these extensions where appropriate.

3. RESULTS
3.1. Evolution of multiple coding: a case study

Figure 1 documents the evolutionary history of one
pair of runs with crossover and a mutation rate of
MU =0.65 (i.e. ca 1.4 mutations/SEQUENCE/
reproduction). Figure 1(a) shows the fitness of the
fittest SEQUENCE, the mean fitness and the location
of the maximal match of GENE-1 and GENE-2 (by
horizontal bars) of the best SEQUENCE over time
(per 100 generations). Fairly soon after the switching
on of GENE-2 the location of the match converges to
the location of the (primary) CODE of GENE-1 (this

location is indicated by the hatched areas). In other

words: multiple coding evolves.

Examining the final population [Figs 1(b)~(d)] we
observe:

— multiple coding is fixated in the population, but
the least fit has a poor match or, sometimes,
alternative maximal matches [Fig. 1(b)].

— variation in the population is fairly large, except
for the (multiple) CODE regions, i.e. the CODEs
show up as relatively conserved regions [Fig. 1{(d)];

— the fitness landscape is “rugged” on the scale of the
region occupied by the final population, i.c. simi-
larity with the fittest sequence and fitness are
unrelated except for a few of the fittest GENOMEs
which sit near the “top” of the fitness landscape to
which the population has evolved [Fig. 1(c)].
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Fig. 1. Case study of the evolution of multiple coding. The evolutionary history of one pair of runs with
crossover and a mutation rate of MU = 0.65 (i.e. ca 1.4 mutations/SEQUENCE/reproduction). For 2000
generations the fitness is only determined by GENE-1; in the next 6000 generations it is determined by
both GENE-1 and the maximal match of GENE-2. The runs are initialized identically (i.e. with the same
initial paputation, target sequence and basic weight vector) except for the position of the CODE (i.e. the
high weights) for GENE-1: it is localized either at position 10-20 or at position 30-40. (a) Evolutionary
development in time (y-axis, bottom to top). Fitness on the negative x-axis; dots: mean fitness; line:
maximum fitness. Positive x-axis represents GENE-1. Match of GENE-2 to GENE-1 of fittest sequence
is depicted by showing its location and length by a horizontal bar. (b) Final populations of both runs,
ordered according to fitness. Representation as for (a). (¢} Fitness landscape. x-axis: Manhattan distance
to fittest sequence. y-axis: fitness. {(d) Sequence variation: fittest sequence and every 10th sequence of the
ardered final populations is given. Conserved sites are detectable.
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Figure 2 generalizes the findings of the case study by
summarizing the results of 25 replicate pairs of runs
with the parameters of the case study above: in the
vast majority of cases multiple coding evolved prefer-
entially in the sensec that there is a considerable over-
lap of the two codes.

3.2. Multipie coding with crossover and high mutation
rates

_The evolution of multiple coding depends on the
mutation rate. Under crossover, a clear preference for
multiple coding exists for mutation rates between
MU =0.5 and MU = 0.85, (i.e. for an average num-
ber of mutations between 1 and 5) (Fig. 3). The
preference for multiple coding at high mutation rates
is present, but less proncunced when the crossover
operator is not used in the evolutionary process
(Fig. 4). For the highest mutation rates (MU = 0.8 to
0.85) multiple coding is a necessary condition for a
stable selection of GENE-2; for the lower mutation
rates this is not the case. Examination of the evol-
utionary histories reveal that multiple coding develops
whenever the selection is relatively slow, but that
arbitrary coding develops when soon after GENE-2 is
switched on a relatively very long match (accidentally)
occurs and takes over the population before it com-
petes with another coding structure. Indeed, at lower
mutation rates, (i.e. MU =0.1 to MU = 0.45) the
absence of coding preference may be for lack of
alternatives before a code is fixated in the population.

3.3. Single coding ar low mutation rates wirhout
crossover

Interestingly, without crossover and at low mu-
tation rates, multiple coding is clearly avoided, ie.

P. HOGEWEG and B. HESPER

single coding is preferred. This is because under these
circumstances mutation is a limiting factor for evol-
utionary adaptation. By avoiding the CODE of
GENE-1 the search for a match between GENE-1 and
GENE-2 exploits the mutations in both genes,
i.e operates under a double mutation rate, and
is therefore more likely to find a match. On the
other hand, when crossovers do occur a low mu-
tation rate is much less a limiting factor, because the
search may operate in parallel, combining partial
solutions (matches) (cf. Holland, 1976). However,
recombination by crossover favours multiple coding
(see below). Thus the apparent absence of coding
preference at low mutation rates with crossover
(Fig. 3) can be the result of opposing coding prefer-
ences. Because of this parallel operation, adaptation
is much more effective with crossover than without,
also for high mutation rates: without crossover only
poor selection for GENE-2 occurs at MU = 0.7
(Fig. 4.)

3.4. Multiple coding and fitness

According to the definition of fitness, fitness is not
a priori affected by the coding structure: the same
fitness scale exists for both multiple and single coding.
Nevertheless the coding structure is conceivably de-
termined by attainable or maintainable fitness. In
other words, are fitness and multiple coding corre-
lated? It turns out that for relatively low mutation
rates, in which a preference for multiple coding
occurs, (e.g. MU = 0.5) there is no correlation (corre-
lation coeff. C =0.13, N =30) between the overlap
of the codes and maximal fitness in the population.
In the case of very high mutation rates (e.g.
MU = 0.85) there is a correlation: without multiple
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Fig. 2. Frequency of occurrence of multiple coding (MU = 0.65; CO = 0.5) x-axis represents GENE-1;

shaded regions are the alternative locations of the CODE of GENE-1 (pos. 10-20 and pos. 30-40). Bars

represent the frequency in which position of GENE-1 is part of the longest match with GENE-2. Shaded

bars: primary CODE at position 10-20, Dark bars primary CODE at position 30-40. Resuits of 25 pairs
of runs summed.
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3.5) show that this is not the case: multiple coding
evolves in populations which are very homogeneous
in the end. This is because in the spatial system:
(1) multiple coding is selected at much lower mu-
tation rates (i.e. MU = 0.2-MU = 0.5) due to the less
effective selection caused by the small subpopulation
from which replacements are selected; (2) small sub-
populations with multiple coding take over the entire
population.

4. DISCUSSION

We will discuss now how our results fit into and
extend different conceptual frameworks which have

been proposed previously in order to understand
evolutionary dynamics.

4.1. Information threshold

Eigen and Schuster (Eigen and Schuster, 1979;
Eigen et al., 1988, 1989; Nowak and Schuster, 1989)
have shown that evolutionary optimization can only
take place if the mutation rate does not exceed a
certain threshold; above this threshold evolution is
just equal to random walk. They point out that the
error rate per nucleotide is fixed at a certain level by
physical-chemical properties; this means that the
length of the sequences, and therewith the amount of

- st

Fig. 4(a)—legend overieaf.
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(2) multiple coding is enhanced by including a
second genetic operator into the evolutionary
process, i.e. crossover; in contrast the evo-
Jutionary model which gives rise to the infor-
mation threshold is based on point mutations
only and we have seen that multiple coding
is only weakly preferred under these circum-
stances.

4.2. Crossover as genetic operator

Holland (1976) has recognized the power of cross-
over as a genetic operator. The general optimization
technique called “genetic algorithms” is mainly based
on this insight. By crossover different schemata
can evolve in parallel, and be combined into a better
solution. Thus, global optimization may be
achieved in rugged fitness landscapes. Our exper-
iments show that crossover indeed enhances optimiz-
ation but also multiple coding, although multiple
coding does not constitute a global optimum
(its fitness is not higher than that of other peaks
which represent unique coding solutions). So, the
effect of this operator in an evolutionary process
should be reexamined. Our 1-D spatial experiments
clearly show that the multiple coding GENOME
is less likely to suffer from “hybrid unfitness™
when crossed over with some other GENOME, be-
cause the CODE of GENE-1 will be identical in
nearly all cases. Thus, a gene which recognizes an
invariant part of the genome will spread. We con-
clude that the crossover genetic operator turns evol-
utionary processes into pattern detectors rather than
optimizers.

4.3. Evolution as pattern processing

Evolution is most often seen as an optimization
process. It is well known that pattern detection or
pattern recognition can be achieved by optimization
procedures. For example pattern detection in neural
networks is based on optimization (e.g. Hopfield,
1984; Ackley et al., 1985). Recently we have proposed
that it might be a good heuristic to view evolution as
pattern processing (Hogeweg and Hesper, 1990)
rather than as optimization. We argued that such a
shift in viewpoint does not require new assumptions
about evolutionary processes, but helps to highlight
properties of evolutionary dynamics which cannot be
expressed in terms of higher fitness. The preference
for multiple-multiple coding reported here is an
example. The evolutionary process can be said to
“recognize” preferentially the relative invariances in
a variable world (multiple coding at high mutation
rates and crossover), and relative variability in an
invariant world (single coding at low mutation rates).
In this test situation invariance could only be
achieved by being important for fitness: hence mul-
tiple coding. In more complex situations other
sources of invariance exist, e.g. by self-organization
where many different initial conditions or interaction

structures may converge to similar macropatterns.
Therefore we expect evolutionary processes to “‘rec-
ognize” such invariances. We have observed such
recognition of macropatterns in the case of spatially
interacting cyclically catalysing molecules (Hyper-
cycles) (Boerlijst and Hogeweg, 1991a,b).

5. CONCLUSIONS

We have shown that in a system in which no
external biases are imposed on an (artificial) Dar-
winian evolutionary process, the dynamics of the
evolution itself imposes patterns on the coding struc-
ture of the replicating units. In particular the evol-
utionary process appears to evolve toward a situation
in which multiple coding is favoured by the evol-
utionary dynamics. The preference for multiple cod-
ing is not reflected in the achieved fitness. We have
proposed that viewing evolution as a pattern detec-
tion process rather than as an optimization process,
might be helpful for detection of such additional
patterns in evolution. Obviously evolutionary pro-
cesses operate under external constraints, imposed by
the physical-chemical properties of the molecules
involved. Nevertheless, because the coding structure
evolves and is not imposed, such constraints may play
a less important role than is often assumed. In any
case, knowing the biases imposed by the evolutionary
process itself may provide us with useful search
images for the study of its final product: present day
molecular sequences.
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