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Abstract-In this paper we explore the influence of the dynamics of evolution on coding structures of 
sequences. We show that, in systems with crossover, high mutation rates cause the rnoq conserved 
subsequences to he preferentially used as recognition sites for newly evolving sequences. In other words: 
“multiple coding” evolves in these systems. Multiple coding often does not increase. the fitness of the 
population; nevertheless it is selected. By contrast, in systems without crossover, a low mutation rate 
causes multiple coding to be avoided. so that only single coding evolves. Again this “choice” is not 
reflected in the fitness of the population, but is dictated by the evolutionary dynamics. We conclude that 
the genetic operator crossover turns evolutionary processes in pattern detectors rather than optimizers. 

1. INTRODUCTION 

I. 1. Evolution and the analysis of biomolecuiar se- 
quences 

DNA and RNA sequences contain a wealth of 
traces of the evolutionary processes by which they are 
shaped, hence evolutionary considerations play an 
important role in the infortnatic analysis of biomolec- 
ular sequences. On the one hand much work in 
computational molecular biology is concerned with 
reconstructing evolutionary pathways (phyiogenies) 
on the basis of patterns of variation in sequences, and 
on the other hand the evolutionary history of se- 
quences is used to unravel the functional significance 
of subsequences. Sequences which are similar in a 
variety of organisms are called “conserved” and are 
supposed to “code” for certain functions. Moreover, 
assumed conservation of secondary and tertiary 
structures of RNA and protein sequences is used in 
the prediction of these higher order structures from 
primary sequences. 

In most research concerned with molecular se- 
quences and evolution the observed molecular se- 
quences are taken as a starting point for the 
investigations, and “conservation” and (random) 
“diversification in time” are the properties of evol- 
utionary processes used in the analysis of the se- 
quences; this analysis may lead to inferences about 
the evolutionary process. In this paper we will report 
on research which proceeds in the opposite direction: 

l The preliminary version of this work was presented during 
the Open Problems in Compu3utlonal Molecular Biology 
Workshop, Tellwide Summer Research Center, Tel- 
lurlde, CO, 2-8 June 1991. 

we start by defining a (simple) evolutionary process 
and investigate the patterns in the coding structure of 
the (artificial) sequences it generates; these patterns 
can he used to “debug” our ideas about evolutionary 
processes, and may serve as “search images” for the 
analysis of molecular sequences. 

1.2. Coding structure of sequences 

The term “coding structure of sequences” refers to 
the arrangement of “codes” in the sequence, using the 
work “code” in the meaning: a pattern which is 
recognized by some part of the system under con- 
sideration, such that the subsequent behaviour of that 
subsystem is determined by the recognition. Possible 
coding structures are: “one to one” or “single’* 
coding: one recognition site is used for one process, 
and the process has no alternative recognition sites; 
“many to one” coding: various recognition sites are 
used for the same (or similar) processes; “one to 
many” or “multiple” coding: the same (or overlap- 
ping) subsequences are used as the most crucial 
recognition site(s) for several processes. (Note that 
“DNA makes RNA makes protein” implies that the 
same sequence is involved in multiple processes and 
thus should harbour codes for these processes. Tri- 
fonov (1989, 1991), Konings ef ai. (1967), Huynen 
et al. (1992) emphasized this phenomenon under the 
heading “multiple coding” or “multiple constraints”, 
we use here the stronger definition as stated above. 

The relationships between evolutionary dynamics 
and coding structure can be studied from different 
perspectives: 
(1) How does the coding structure of sequences 

influence evolutionary optimization, i.e. how 
does it influence the shape of “fitness landscapes” 
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(see e.g. Kauffman and Smith, 1986; Kauffman, 
1989; Fontana and Schuster (1987), Fontana 
et al., 1989,199O; Schuster, 1991). 

(2) Do evolutionary processes bias the coding struc- 
ture and if so, how? 

The two questions can be dealt with in combi- 
nation (e.g. Kauffman and Johnson, 1991), but at 
present we think it useful to study them (also) 
separately. So we explore the second type of question 
and focus on the circumstances under which evol- 
utionary dynamics will tend to generate either single 
coding or multiple coding. (Note: our experimental 
setup does not allow one to many coding, or other, 
more complicated, coding structures.) 

Single coding is often assumed to be the default 
situation. It seems to be the most efficient coding 
structure because it allows for independent optimiz- 
ation of each process. Multiple coding is then seen as 
hampering evolutionary optimization, which is to be 
avoided as much as possible. (“Make the best of a 
bad job”.) Nevertheless multiple coding, in the strong 
sense defined above, is observed in biotic sequences 
and is often striking. One example is the conserved 
sites of tRNA: they are conserved in all tRNA (pro- 
karyotic and eukaryotic alike) and function in the 
transfer process; in eukaryotes the same sites are used 
as recognition sites for Pol III, i.e. in transcription. 
Moreover, the same sites appear to bind several DNA 
binding factors and, in reconstructing the evolution- 
ary history of Ul snRNAs, we noted the crucial roles 
of again the same sites in the folding of ancestral Ul 
molecules (Hogeweg and Konings, 1985). Other ex- 
amples include regulation sites (coded in terms of con- 
served secondary structure) within the protein coding 
region in e.g. Lentiviruses (Saltarelli et al., 1990; 
Konings, 1992), and overlapping reading frames in 
various viruses. In the experiments we report here, the 
tRNA examples may serve as a prototype. 

2. METHODS 

Our method for studying the problems sketched 
above is to define paradigm systems of “evolving 
sequences” and to observe the coding structure which 
evolves. The paradigm system is not supposed to 
match any real system closely, but it tries to study the 
consequences of a simple model of evolutionary 
dynamics in isolation. In particular, because we want 
to study exclusively the informatic constraints the 
evolutionary dynamics imposes on the coding struc- 
ture of a sequence, we ignore not only the fact that 
sequences have physical-chemical properties, but 
even make an effort to exclude any implicit non- 
evolutionary properties in our experiments. Note that 
calling recognition sites “codes” invites this (odd) 
behaviour: the relationship between “code” and 
“meaning” is supposed to be an arbitrary convention. 
In order not to confuse this paradigm (digital) system 
with a “wet” system, its constituent entities will be 
denoted with capitals. 

Our evolving GENOME consists of a 4 letter 
SEQUENCE which represents two GENES. GENE-l 
(here of length 50) evolves first, and is supposed to 
confer fitness (Fl) to its GENOME according to its 
match on some preassigned (4 letter) SEQUENCE. 
This match is weighted, relative to a preassigned 
weight vector, which is constructed by assigning a 
large weight (in the reported experiments 30) to a 
stretch (here of length 10) of adjacent positions, and 
by randomly assigning small weights (here between 0 
and 5) to all other positions. The stretch represents a 
“code” (as defined above) for GENE-l. GENE-2 
(here of length 20) evolves later. It is supposed to 
need the recognition of the presence of GENE-l for 
its function. Recognition is by matching a subse- 
quence to GENE-l. The fitness conferred to the 
GENOME depends on the length of the match (LM) 
(up to a maximum), i.e. by the HILL function: 

F2= 
LM2 

P-f LAP’ 
K= 12. 

Total fitness of the GENOME is simply the weighted 
sum of the fitness of both genes: F = Fl + R x 
F2, R = 0.5 or varying. 

Evolution of the sequences is defined by a simple 
“genetic algorithm”; a population of GENOMEs 
(population size 100) reproduce and compete. During 
reproduction the sequences are subjected to two 
“genetic operators”: 

l “mutation”: randomly chosen “letters” (from the 
4 letter alphabet) are put in randomly chosen 
positions in the GENOME. Mutation rate (MU) 
is defined as the probabiiity of a (next) mutation 
taking place in the GENOME under consideration 
(i.e. mutations take place until a drawing from a 
uniform distribution between 0 and 1 is greater 
than MU). Note that a mutation may not change 
the letter, or it may he a “back mutation”. MU is 
varied from 0.1 to 0.85, i.e. between ca 0.1 and S 
mutations per reproduction. 

0 “Crossover”; if crossover occurs, reproduction is 
by 2 GENOMEs and GENE-l is taken from one 
GENOME, GENE-2 from the other one, i.e. 
crossover is always between the 2 GENES, they are 
not supposed to be adjacent. Crossover prob- 
ability is set to CO = 0 (no crossover) or CO = 0.5 
(equal probability that the new GENOME is 
assembled from one to two parent GENOMEs). 

Competition (selection) takes place through “non- 
survival of the non-fittest*’ as well as “reproduction 
of the fittest”. 

l “Non-survival of the non-fittest”: At every gener- 
ation 10 GENOMEs (10% of the population) 
decay. Probability of decay is governed by 

l/F, 
VJ’ 

where Ff and Fj are the fitness of GENOME i or 
j and the sum is taken over the entire population. 
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l “Reproduction of the fittest”: Probability of rcpro- pair the CODE of GENE-l ( e.g. the high weights) 
duction is likewise governed by F&C,; when is located at position 10-20, and in the other run the 
ciossover occurs two parent GENOMEs arc thus CODE is located at position 30-40. We study where 
selected to reproduce one offspring. GENE-2 will match GENE-l. 

Note that both selection processes are weak, i.e. This basic paradigm system is extended in the 
selection is subjected to high noise levels. following ways: 

1. longer and shorter GENOMEs arc used. 
In order to exclude influences of particular se- 2. Both GENES evolve simultaneously. 

quences of letters (which greatly determine the prob- 3. 1-D spatial structure is added by allowing a de- 
abilitv of matchine (see e.g. Pevzner et al.. 1989)). i.e. caved GENOME to be replaced only by offspring a YI Y I , .  

to exclude all implicit “physical properties”, we per- from adjacent GENOMis. _ _ 
is 
of 

form our experiments in “pairs of runs” which use the 4. The ratio of contribution in both GENES 
same (randomly constructed) target SEQUENCE, varied, starting with a very low contribution 
weightvector and initial GENOME. In one run of the GENE-2 which is (very slowly) increased. 

EVOLllTIO~RY HISTORY: MUTATION-RATE- -65 CROSSOVER-RATE- .5 



174 P. HOOEWEG and B. HESPER 

We will report mainly on the basic model, but will location is indicated by the hatched areas). In other 
refer to these extensions where appropriate. words: multiple coding evolves. 

Examining the final population [Figs l(b)-(d)] we 
3. RESULTS observe: 

- 
3.1. Evolution of multiple coding: a case study 

multiple coding is fixated in the population, but 
the least fit has a poor match or, sometimes, 

Figure 1 documents the evolutionary history of one alternative inaximal matches [Fig. l(b)]. 
pair of runs with crossover and a mutation rate of - variation in the population is fairly large, except 
MU = 0.65 (i.e. ca 1.4 mutations/SEQUENCE/ for the (multiple) CODE regions, i.e. the CODES 
reproduction). Figure l(a) shows the fitness of the show up as relatively conserved regions [Fig. l(d)]; 
fittest SEQUENCE, the mean fitness and the location - the fitness landscape is “rugged” on the scale of the 
of the maximal match of GENE-l and GENE-2 (by region occupied by the final population, i.e. simi- 
horizontal bars) of the best SEQUENCE over time larity with the fittest sequence and fitness are 
(per 100 generations). Fairly soon after the switching unrelated except for a few of the fittest GENOMES 
on of GENE-2 the location of the match converges to which sit near the “top” of the fitness landscape to 
the location of the (primary) CODE of GENE-1 (this which the population has evolved [Fig. l(c)]. 

0 
-10 0 10 20 30 40 50 

FITNESS CEWE-1 

0 
-to 0 to 20 30 40 50 

FITNESS B-1 

Fig. I(b )---legend oppsh 
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Fig. 1. Case study of the evolution of multiple coding. The evolutionary history of one pair of runs with 
orossover and a mutation rate of MU = 0.65 (i.e. csz 1.4 mutations/SEQUENCE/reproduction). For 2000 
generations the fitness is only determined by GENE-l; in the next 6ooo generations it is determined by 
both GENE-1 and the maximal match of GENE-2. The runs are initialized identically (i.e. with the same 
initial paputation. target sequence and basic weight vector) except for the Position of the CODE (i.e. the 
high weigltts) for GENE-I: it is localized either at position 10-20 or at position 3040. (a) Evolutionary 
development in time b-axis, bottom to top). Fitness on the negative x-axis; dots: mean fitness; line: 
maximum fitness. Positive x-axis represents GENE-l. Match of GENE-2 to GENE-1 of l%teat sequence 
is depicted by showing its location and length by a horizontal bar. (b) Final Populations of both runs. 
ordered according to fitness. Representation as for (a). (c) Fitness landscape. x-axis: Manhattan distance 
to fittest sequence. y-axis: fitness. (d) Sequence variation: fittest sequence and evety 10th sequence of the 

ordered final populations is given. Conserved sites are dote&able. 

Fig. 1 (c. d) 
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Figure 2 generalizes the findings of the case study by 
summarizing the results of 25 replicate pairs of runs 
with the parameters of the case study above: in the 
vast majority of cases multiple coding evolved prefer- 
entially in the sense that there is a considerable over- 
lap of the two codes. 

3.2. Multiple coding with crossover and high mutation 
rates 

The evolution of multiple coding depends on the 
mutation rate. Under crossover, a clear preference for 
multiple coding exists for mutation rates between 
MU = 0.5 and MU = 0.85, (i.e. for an average num- 
ber of mutations between 1 and 5) (Fig. 3). The 
preference for multiple coding at high mutation rates 
is present, but less pronounced when the crossover 
operator is not used in the evolutionary process 
(Fig. 4). For the highest mutation rates (MU = 0.8 to 
0.85) multiple coding is a necessary condition for a 
stable selection of GENE-2; for the lower mutation 
rates this is not the case. Examination of the evol- 
utionary histories reveal that multiple coding develops 
whenever the selection is relatively slow, but that 
arbitrary coding develops when soon after GENE-2 is 
switched on a relatively very long match (accidentally) 
occurs and takes over the population before it com- 
petes with another coding structure. Indeed, at lower 
mutation rates, {i.e. MU = 0.1 to MU = 0.45) the 
absence of coding preference may be for lack of 
alternatives before a code is fixated in the population. 

single coding is preferred. This is because under these 
circumstances mutation is a limiting factor for evol- 
utionary adaptation_ By avoiding the CODE of 
GENE- 1 the search for a match between GENE- 1 and 
GENE-2 expIoits the mutations in both genes, 
i.e operates under a double mutation rate, and 
is therefore more likely to find a match. On the 
other hand, when crossovers do occur a low mu- 
tation rate is much less a limiting factor, because the 
search may operate in parallel, combining partial 
solutions (matches) (cf. Holland, 1976). However, 
recombination by crossover favours multiple coding 
(see below). Thus the apparent absence of coding 
preference at low mutation rates with crossover 
(Fig. 3) can be the result of opposing coding prefer- 
ences. Because of this parallel operation, adaptation 
is much more effective with crossover than without, 
also for high mutation rates: without crossover only 
poor selection for GENE-2 occurs at MU 2 0.7 
(Fig. 4.) 

3.4. Multiple coding and fitness 

3.3. StigIe coding at low mutation rates without 
crossover 

Interestingly, without crossover and at low mu- 
tation rates, multiple coding is clearly avoided, i.e. 

According to the definition of fitness, fitness is not 
a priori affected by the coding structure: the same 
fitness scale exists for both multiple and single coding. 
Nevertheless the coding structure is conceivably de- 
termined by attainable or maintainable fitness. In 
other words, arc fitness and multiple coding corre- 
lated? It turns out that for relatively low mutation 
rates, in which a preference for multiple coding 
occurs, (e.g. MU = 0.5) there is no correlation (corre- 
lation coeff. C = 0.13, N = 30) between the overlap 
of the codes and maximal fitness in the population. 
In the case of very high mutation rates (e.g. 
MU = 0.85) there is a correlation: without multiple 

L 
E 2000 

up 

E 

: 
1500 

Fig. 2. Frequency of ounurenee of multiple coding (MU a 0.65; Co - 0.5) x-axis represents GENE-l; 
shaded regions are the alternative locations of the CODE of GENE-l @OS. l&20 and pos. 30-W). Bars 
rqmwnt the fqnency in which position of GENE-I ia part of the longest match with GENE2. Shaded 
Barth primary CODE at position M-20. Dark bars primary CODE at position 3M. Results of 25 pairs 

of runs summed. 
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coding the matching of the genes cannot bc maxi- 3.5. Multiple coding and hybrid ut@ness 
mized by selection, and accidentally arising long 
matches cannot be maintained. At intermediate Competition between single and multiple coding 
mutation rates (e.g MU = 0.65) we see very high can be observed nicely by imposing a spatial structure 
fitness values co-occurring with considerable overlap on the population. We used a 1-D spatial structure in 
of the codes, but the fitness attained in most evol- which a decaying GENOME is replaced by.offspring 
utionary histories occurs with single or multiple of nearby GENOMEs (chosen from 3 on either site 
coding alike (except for the fact that single coding according to our fitness criterion). In this system we 
is much rarer). Thus we conclude that the preferenoe observe that different single coding solutions can 
of multiple coding is not primarily due to the coexist in the population even if there is quite some 
attainability or maintainability of a higher fitness but fitness difference, but a multiple coding solution takes 
is due to some other aspect of the evolutionary over the population quickly. This is because a hybrid 
dynamics. offspring which inherits GENE-2 from the multiple 

(a) 

Fig. 3(a)--legend oue&uJ 
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Fig. 3(b) 
Fig. 3. Dependence of coding structure on mutation rate: CROSSOVER (CO = 0.5). Representation as 
in Fig. 2. Five pairs of runs summed for each mutation rate. (a) Top to bottom: MU = 0.85 to MU = 0.5 
(i.e. average number of mutations/generation 5 to 1): multipIe coding is weakly favoured. (b) Top to 

bottom: MU = 0.45 to MU = 0.1: arbitrary coding. 

coding GENOME is likely to do well since the 
sequence to which it should match is present in the 
other GENOME because of its coding function for 
GENE- 1. Contrariwise an offspring which inherits its 
GENE-2 from a single coding GENOME will gener- 
ally have very low fitness, i.e. it exhibits “hybrid 
unfitness”. Hybrid unfitness spatially isolates sub- 
populations which can coexist indefinitely. We wn- 
elude that in a population with recombination, 
relatively conserved parts of the GENOME are to be 

preferred as CODES because they allow the spread of 
new GENES in the population. 

3.6. Multiple coding and intrapopulation mariation 

In the system described above, multiple coding 
evolves if and only if there is a large intrapopulation 
variation due to high mutation rates [Fig. l(d)]. 
Should we conclude that low intrapopulation vari- 
ation multiple coding cannot be caused by the evol- 
utionary dynamics? The spatial experiments (section 
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3.5) show that this is not the case: multiple coding been proposed previously 
evolves in populations which are very homogeneous evolutionary dynamics. 
in the end. This is because in the spatial system: 
(1) multiple coding is selected at much lower mu- 4.1. Information threshold 

179 

in order to understand 

tation rates (i.e. MU = 0.2-MU = 0.5) due to the less 
effective selection caused by the small subpopulation 

Eigen and Schuster (Eigen and Schuster, 1979; 

from which replacements are selected; (2) small sub- 
Eigen kt al., 1988,1989; Nowak and Schuster, 1989) 

populations with multiple coding take over the entire 
have shown that evolutionary optimization can only 

population. 
take place if the mutation rate does not exceed a 
certain threshold; above this threshold evolution is 

4. DISCUSSION just equal to random walk. They point out that the 
error rate per nucleotide is fured at a certain level by 

We will discuss now how our results fit into and physical-chemical properties; this means that the 
extend different conceptual frameworks which have length of the sequences, and therewith the amount of 

Fig. 4(a)-legend overieuf. 
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Fig. 4(b) 
Fig. 4. Dependence of coding structure on mutation rate: NO CROSSOVER (CO = 0) Representation 
as for Figs 2 and 3, Five pairs of runs summed for each mutation rate. (a) Top to bottom: MU = 0.85 
to MU = 0.5 (i.e. average number of mutations/generation 5 to 1): multiple coding is weakly favoured. 

(b) Top to bottom: MU = 0.45 to MU = 0.1: single coding favoured (multiple coding avoided). 

information stored, is limited, hence the concept of 
information threshold. 

Our results fit into this conceptualization nicely. 
Multiple coding evolves if and only if the evolution- 
ary process operates not too far from the information 
threshold; at lower mutation rates coding is initially 
arbitrary, and at very low mutation rates, it even selects 
unique coding preferentially. This means that at low 
mutation rates the length of the crucial parts of the 

sequence increases, and that the evolutionary process 
moves toward the information threshold, where mul- 
tiple coding is first preferred and later (i.e. at higher 
mutation rates) delays the onset of non-evolvability. 

Nevertheless the information threshold is appar- 
ently not the mechanism which causes multiple cod- 
ing because: 
(1) multiple coding is preferred before the storage of 

information is limited; and 
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(2) multiple coding is enhanced by including a 
second genetic operator into the evolutionary 
process, Le. crossover; in contrast the evo- 
lutionary model which gives rise to the infor- 
mation threshold is based on point mutations 
only and we have seen that multiple coding 
is only weakly preferred under these circum- 
stances. 

4.2. Crossover as genetic operator 

Holland (1976) has recognized the power of cross- 
over as a genetic operator. The genera1 optimization 
technique called “genetic algorithms” is mainly based 
on this insight. By crossover different schemata 
can evolve in parallel, and be combined into a better 
solution. Thus, global optimization may be 
achieved in rugged fitness landscapes. Our exper- 
iments show that crossover indeed enhances optimiz- 
ation but also multiple coding, although multiple 
coding does not constitute a global optimum 
(its fitness is not higher than that of other peaks 
which represent unique coding solutions). So, the 
effect of this operator in an evolutionary process 
should be reexamined. Our 1-D spatial experiments 
clearly show that the multiple coding GENOME 
is less likely to suffer from “hybrid unfitness” 
when crossed over with some other GENOME, be- 
cause the CODE of GENE-l will be identical in 
nearly all cases. Thus, a gene which recognizes an 
invariant part of the genome will spread. We con- 
clude that the crossover genetic operator turns evol- 
utionary processes into pattern detectors rather than 
optimizers. 

4.3. Euoiurion as pattern processing 

Evolution is most often seen as an optimization 
process. It is well known that pattern detection or 
pattern recognition can be achieved by optimization 
procedures. For example pattern detection in neural 
networks is based on optimization (e.g. Hopfield, 
1984; Ackley et al., 1985). Recently we have proposed 
that it might be a good heuristic to view evolution as 
pattern processing (Hogeweg and Hesper, 1990) 
rather than as optimization. We argued that such a 
shift in viewpoint does not require new assumptions 
about evolutionary processes, but helps to highlight 
properties of evolutionary dynamics which cannot be 
expressed in terms of higher fitness. The preference 
for multiple-multiple coding reported here is an 
example. The evolutionary process can be said to 
“recognize” preferentially the relative invariances in 
a variable world (multiple coding at high mutation 
rates and crossover), and relative variability in an 
invariant world (single coding at low mutation rates). 
In this test situation invariance could only be 
achieved by being important for fitness: hence mul- 
tiple coding. In more complex situations other 
sources of invariance exist, e.g. by self-organization 
where many different initial conditions or interaction 

structures may converge to similar macropatterns. 
Therefore we expect evolutionary processes to “rec- 
ognize” such invariances. We have observed such 
recognition of macropatterns in the case of spatially 
interacting cyclically catalysing molecules (Hyper- 
cycles) (Boerlijst and Hogeweg, 1991a,b). 

5. CONCLUSIONS 

We have shown that in a system in which no 
external biases are imposed on an (artificial) Dar- 
winian evolutionary process, the dynamics of the 
evolution itself imposes patterns on the coding struc- 
ture of the replicating units. In particular the evol- 
utionary process appears to evolve toward a situation 
in which multiple coding is favoured by the evol- 
utionary dynamics. The preference for multiple cod- 
ing is not reflected in the achieved fitness. We have 
proposed that viewing evolution as a pattern detec- 
tion process rather than as an optimization process, 
might be helpful for detection of such additional 
patterns in evolution. Obviously evolutionary pro- 
cesses operate under external constraints, imposed by 
the physical+hemical properties of the molecules 
involved. Nevertheless, because the coding structure 
evolves and is not imposed, such constraints may play 
a less important role than is often assumed. In any 
case, knowing the biases imposed by the evolutionary 
process itself may provide us with useful search 
images for the study of its final product: present day 
molecular sequences. 

Acknowledgement-We thank Martijn Huynen for useful 
discussions. 
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