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In the study of pre-biotic evolution self-structuring and evolutionary processes are themes that are usually studied 

separately. In this paper we demonstrate that spatial self-structuring in incompletely mixed media can profoundly change 

the outcome of evolutionary processes; for instance, positive selection for “altruistic” features becomes feasible. 

A spatial cellular automaton model of self-replicative molecules that are linked cyclically by catalysis (i.e. a hypercycle) 

was studied. Because of the spiral structures that emerge in such a system, the hypercycle becomes resistant to a large class 

of “parasites”, i.e. molecules that give no catalytic support but receive increased catalytic support. 

1. Introduction 

Accumulation of information is a central issue 
in pre-biotic evolution. Eigen and Schuster [l] 
were the first to stress the existence of the infor- 
mation threshold; in a system containing self-rep- 
licative molecules the length of the molecules is 
restricted by the accuracy of replication. In their 
hypercycle theory Eigen and Schuster state that if 
the information threshold is to be crossed a num- 
ber of molecules have to catalyse the replication 
of each other in a cyclic way (see appendix A, fig. 
3). This so-called hypercycle has great selective 
advantages. Each molecule in the hypercycle is 
still bound to the maximum string-length, but the 
molecules can combine their information and thus 
cross the information threshold. 

An important obje’ction to the hypercycle the- 
ory has been raised by Maynard Smith [2]: be- 
cause there is no selection for the giving of 
catalytic support to the replication of another 
molecule, this property cannot be maintained. 

*The investigations were supported by the Foundation for 

Biophysics, which is subsidized by the Netherlands Organiza- 

tion for Scientific Research (NWO). 

Giving catalytic support is in fact an “altruistic” 
property, i.e. it does not raise the number of 
copies of the molecule itself, but it does increase 
the number of copies of another (competing) 
species. 

As a result a hypercycle is vulnerable to so- 
called “parasites”. Fig. 4 (see appendix A) shows 
a hypercycle with a parasite. The parasite is capa- 
ble of self-replication; it gets catalytic support 
from species 2 but does not give catalytic support 
to any other molecule. If the support the parasite 
gets from species 2 is greater than the support 
species 3 gets from 2 (i.e. kpar > k,), the parasite 
will be selected in favour of species 3 and the 
entire hypercycle will be lost. There seems to be a 
large class of parasites that are fatal to hypercy- 
cles, i.e. hypercycles are evolutionarily unstable. 

Up to now the hypercycle theory was formu- 
lated and studied in terms of ordinary differential 
equations. This model formalism implies an ide- 
ally mixed medium. Of course it is more realistic 
to assume incomplete mixing of the medium. In 
this study we will formulate a model in which 
molecules with hypercyclic interactions are em- 
bedded in an incompletely mixed medium. Such a 
spatial hypercycle system generates large scale 
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spiral structures. We will show that this spatial 
self-structuring yields the hypercycle resistant to 
(many) parasites. 

2. The model 

In order to simulate incomplete mixing we use 
the model formalism of the cellular automata [3]. 
A cellular automaton is defined as a large tessela- 
tion of identical finite state automata (cells). Each 
automaton is defined as a triplet: (I, S, W), where 
I is the set of inputs, S is the set of states (both 
sets being finite and usually small), and W is the 
next-state function, defined on input-state pairs. 
The inputs are the states of “neighbour” cells, 
i.e. the adjacent cells in the tesselation. Cellular 
automata have proved to be a powerful tool in 
the study of spatial processes, for instance fluid 
dynamics [3-51. 

In our cellular automaton the total space con- 
sists of 300 x 300 cells in a square toroidal tesse- 
lation. The state of a cell refers either to its 
occupation by a molecule of a certain species or 
to its emptiness, i.e. a cell can contain one 

# 

A. decay B. replication 

molecule or it can be empty. In the next-state 
function of the cells (see table 11 we implement a 
representation of three processes, namely decay, 
replication and catalysis of molecules: 

(1) Decay (see fig. 1A) can occur when a cell is 
occupied; after decay the cell becomes empty. 
The probability of decay is species (i.e. state) 
dependent. 

(2) Replication (see fig. 4Bl is only possible in 
empty cells; a molecule in one of the four direct 
neighbour cells can replicate into the empty cell. 
The probability of replication is species depen- 
dent. There is also a probability that the cell will 
remain empty. 

(3) Catalysis (see fig. 4C) is related to replica- 
tion; the probability that a molecule will replicate 
into an empty cell is increased when there are 
catalytic molecules in at least one of the four cells 
that lie adjacent to the direction of replication. 

In addition to these three processes diffusion is 
included in our model as a separate process, 
operating in between “time steps”. We use the 
diffusion algorithm of Toffoli and Margolus 131, 
which ensures particle conservation. In this algo- 
rithm the space is divided into subfields of 2 x 2 

C. catalysed replication 

# 

empt 

X 

+# 

X 

catX X catX 

FP catX X catX t +l 

I I 

Fig. 1. Three state transitions of a cell in a cellular automaton in which hypercycles can be simulated. The next state t + 1 is drawn 

below the present state f; X is a molecule of a certain species; catX is a molecule that catalyses molecule X’s replication. See text 
for further explanation. 
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Table 1 

Next state probability function p( ) of a cellular automation in which hypercycles can be simulated. Explanation of some terms: 

decay[x] is the decay parameter of molecule x; self[x] is the replication parameter of x; c[x,y] is the catalytic support x gets from y; 

Claim,,nLy is a constant, which is set to 11; Ntorth), S, W, E, NW, NE, SW, SE are the states of the eight neighbour cells indicated 

by their compass direction. 

If the cell is occupied by a molecule x: 

p(empty) = decay[x]; 

p(x) = 1 - decay[x]; 

If the cell is empty: 

p(empty) = Claim .,,,,/L Claims (no replication); 

p(N) = Claim N/Z Claims; 

p(S) = Claim& Claims; 

p(W) = Claim,/X Claims; 

p(E) = Claim n/Z Claims; 

In which: 

C Claims = Claim,,,,,+ClaimN+Claims+Claimw+Claim,; 

Claim. = self [N] + c[N, NE] + c[N, NW] + c[N, E] + c[N, WI; 

Claims = self [S] + c[S, SE] + c[S, SW] + $3, E] + c[S, WI; 

Claim w = self [W] + c[W, NW] + c[W, SW] + c[W, N] + c[W, S]; 

Claim n = self [El + c[E, NE] + c[E, SE] + c[E, N] + c[E, S]; 

cells. At each diffusion step the states of a sub- hypercycle; catalysed replication is much stronger 

field are rotated 90” clockwise or anti-clockwise than non-catalysed replication (table 1: c[2,11= 

with equal probability. After a diffusion step the c[3,2] = . . . = c[l, 91 = 100). After each time step 

subfields are shifted one cell diagonally. there are two diffusion steps. 
Note that this cellular automaton is a straight- 

forward representation of the physical process 
modelled (see ref. [6]), i.e. catalysis and replica- 
tion of molecules. Partial differential equations 
could be constructed which simulate this cellular 
automaton; such a reformulation, however, would 
introduce extra, ad hoc, parameters. 

Plate 1B shows the situation after 500 time 
steps. Spiral structures have developed containing 
all members of the hypercycle in catalytic order. 
Each species grows towards its catalytic sup- 
porter; species 2 (red) grows towards species 1 
(purple), species 3 (orange) grows towards species 
2 and so on. As a result of this directional growth 
the spirals rotate. 

3. Results 

3.1. Development of spirals 

First we study the spatial behaviour of a set of 
molecules which are part of a pre-defined hyper- 
cycle. In plate 1A the nine members of this 
hypercycle are distributed at random in the space; 
50% of the cells are empty. The nine molecule 
species have identical replication and decay pa- 
rameters (table 1: selfll..9] = 1; decay[l..91= 0.2). 
Each species catalyses one other member of the 

Place 1C shows the situation after 1500 time 
steps. Most spirals occur in couples; a spiral 
rotating clockwise is close to a spiral rotating 
anticlockwise. Some spirals have disappeared. 
This happens when two spirals rotating in the 
opposite direction come too close to one another. 
The number of molecules of a species between 
the two spirals is then reduced. If by chance a 
species dies out, then temporarily the species that 
gives catalytic support to the extinct species takes 
over the complete region of the double spiral. 
Because this species now no longer gets catalytic 
support, the region formerly occupied by the dou- 
ble spiral is taken over by other nearby spirals. 
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After 1500 time steps the pattern remains con- 

stant: the centres of the spirals do not move and 

all spirals have the same rotation time, which in 

this case is approximately 110 time steps. 

The middle of a spiral acts as a centre of 

growth for the entire spiral. This is demonstrated 

in plates 2A-2C. As a starting pattern we use the 

situation of plate 7A; a stabilized pattern of a 

hypercycle that consists of 6 members. In plate 

2A the molecules in the middle and the periphery 

of the huge single spiral are labelled (only the 

labelled molecules are coloured; each colour rep- 

resents three molecule species that are adjacent 

in the hypercycle). In plate 2B, after 30 time 

steps, the descendants of the labelled molecules 

in the periphery have reached the edge of the 

region of the spiral. The labelled molecules in the 

middle of the spiral have increased in number. 

After 200 time steps (see plate 20 the molecules 

from the middle have taken over the complete 

spiral region and the molecules from the periph- 

ery have disappeared. This direction of growth is 

caused by the catalytic waves that travel from the 

middle towards the periphery of the spiral. Note 

that although the spirals rotate, growth is not 

rotational. 

Thus in this incompletely mixed medium, cyclic 

catalysis has remarkable self-structuring proper- 

ties: from a random start a stable situation with 

interlocking rotating spirals emerges. The spirals 

are often in couples and the middle of a spiral is 

the centre of growth of the entire spiral. This 

spatial self-structuring changes the selectional 

properties of the hypercycle. In this study we will 

focus on one specific property, namely the vulner- 

ability of a hypercycle to parasites. 

3.2. Stability against parasites 

We infected the situation of plate 1C randomly 

with 100 “deadly” parasites. The parasite has the 

same replication and decay parameter as 

molecules in the hypercycle. It gets catalytic sup- 

port from species 2 (red); this catalytic support is 

twice as strong as the support that species 3 gets 

spiral centre 

Fig. 2. Schematic diagram of a growing parasite. The parasite 

gets catalytic support from species 2. See text for further 

explanation. 

from species 2 (table 1: c[parasite, 21 = 2001. The 

parasite does not give catalytic support to any 

member of the hypercycle. Plates 3A-3C show 

the situation after 30, 60 and 110 time steps. The 

parasite starts to grow in regions where it is near 

its catalytic supporter, species 2. However, the 

parasite grows in the direction of the periphery of 

the spirals. Eventually, at the boundaries of the 

spirals the parasite is wiped out; after 160 time 

steps the parasites have vanished completely. 

Why does a parasite grow towards the periph- 

ery of a spiral? In fact, the parasite simply follows 

the general direction of growth in a spiral, as 

mentioned in the previous section, although it is 

not “pushed” outwards by a molecule that it 

catalyses, because it does not give catalysis. Let 

us take a closer look at what happens in a para- 

site region. In fig. 2 a parasite region is shown 

schematically. Four types of competition take 

place, all in different subregions: 

(i> In subregion A the parasite competes with 

species 2. The parasite gets catalytic support 

from species 2 and is therefore far stronger than 

species 2. 

(ii> In subregion B the parasite competes with 

species 3. Both get catalytic support from species 

2. The parasite gets stronger support; it gains 

ground over species 3. 

(iii) In subregion C the parasite also competes 

with species 3. In this subregion no catalytic 

support is given to either species; the competition 

is neutral. 
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On the next two pages the following colour plates are shown: 

Plate 1. Development of a spiral wave pattern in a spatial hypercycle system. Colour molecule species: (1) purple; (2) red; (3) 

orange; (4) yellow; (5) dark green; (6) light green; (7) light blue; (8) middle blue; (9) dark blue. In order to increase contrast we do 

not show the state of a cell, but instead we show the majority molecule species in the 9-cell neighbourhood of the cell. If all 9 cells 

are empty the cell is white. (A) t = 0, random initialization; (B) t = 500; (C) t = 1500. See text for further explanation. 

Plate 2. Direction of growth within a spiral. Molecules in the middle and the periphery of a spiral are labelled. Plate 7A is used as 

a starting pattern. (A) t = 0, starting pattern with labelling; (B) t = 30; (C) t = 200. 

Plate 3. Parasite invasion. The situation of plate 1C is infected randomly with 100 parasites. If there is one parasite in the 9-cell 

neighbourhood of a cell, the cell is black. For other colours see plate 1. The parasite first starts to grow, but eventually it is wiped 

out completely and the spiral pattern is restored. (A) t = 30; (B) t = 60; (C) t = 110. 

Plate 4. Parasite invasion in the centre of a double spiral. First the region of the double spiral is taken over by the parasite, but 

eventually the parasite is wiped out by other spirals. Colours as in plate 3. (A) t = 110; (B) t = 550. 

Plate 5. Parasite invasion in the centre of a single spiral. The parasite remains present as a cyst. Colours as in plate 3. t = 600. 

Plate 6. Reinforcement of a spiral. In the situation of plate 7A all molecules that are not close to the centre of a single spiral are 

removed. The single spiral in the middle of the field is removed completely. The removed spiral re-appears, although it is much 

smaller and not exactly at the same spot. (A) t = 0, situation after removal; (B) t = 60; (C) t = 300. 

Plate 7. The effect of diffusion. (A) t = 2000, 2 diffusion steps after every time step; (B) t = 500, no diffusion; (C) t = 500, 16 
diffusion steps after every time step. 

(iv) In subregion D the parasite competes with 
species 4. Although the parasite does not give 
catalytic support to species 4, there will always be 
some molecules of species 3 in the subregion (i.e. 
due to diffusion) which do give catalytic support 
to species 4. This causes species 4 to be far 
stronger than the parasite. 

In summary, the parasite wins in subregions A 
and B. This causes it to grow towards the periph- 
ery of the spiral. The parasite loses in subregion 
D. This leads to a narrowing of the parasite 
region. If the parasite is not completely elimi- 
nated by the catalytic wave of species 4, then it is 
eliminated by the catalytic wave of species 5. 
Only after seven catalytic waves does the parasite 
again meet species 2 and only then can it grow 
towards the middle of the spiral. This growth, 
however, does not compensate for the loss in- 
curred through the catalytic waves, so the para- 
site grows towards the periphery of a spiral. 

3.3. Parasite invasion in the middle of a spiral 

The inability of a parasite to grow towards the 
middle of a spiral explains the sequence in plates 
3A-3C, but what happens if a parasite invades 
right in the middle of a spiral? In plate 4A such 
an event has taken place: a single parasite has 
been introduced into the middle of a spiral and 
after 110 time steps the parasite has taken over 
the complete domain of a double spiral. How- 
ever, by doing this it has destroyed the double 
spiral, and now it has to compete with other 
spirals. We already know that a spiral gains 
ground over a parasite, so in plate 4B after 550 
time steps the parasite invasion is wiped out 
completely and the region of the “killed” double 
spiral is taken over by other (double) spirals. 

There is a second possible result of a parasite 
hitting the middle of a spiral. An example is 
shown in plate 5: the parasite has been intro- 
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Plate 1A Plate 1B Plate 1C 

Plate 3A Plate 3B Plate 3C 

Plate 4A Plate 48 Plate 5 
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Plate 6A Plate 6B 

Plate 7A Plate 78 

Plate 2A Plate 2B 

Plate 6C 

Plate 7C 

Plate 2C 
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duced into the middle of a single spiral and again 
it has taken over the domain of the spiral. Now, 
however, after 600 time steps the parasite still is 
not wiped out by other spirals. The situation 
appears to be stable in time; the parasite forms a 
relatively small “cyst”. 

This last result looks puzzling. Why do the 
other spirals not take over the parasite region just 
as in the previous case where a double spiral was 
“killed” by a parasite? The key to the answer to 
this question is that a single spiral is not an 
independent entity. This is demonstrated by the 
removal experiment in plate 6A: all molecules in 
plate 7A that are not close to the middle of a 
spiral are removed; the single spiral in the middle 
of the field is removed completely. In plate 6B 
after 60 time steps the spirals start to grow again 
and in plate 6C after 300 time steps the spiral 
pattern has re-appeared. The single spiral that 
was removed has recovered, although it is a bit 
smaller and it is not exactly at the same spot. It 
turns out that, on a toroidal field, for each spiral 
rotating clockwise there must also be a spiral 
rotating anti-clockwise. 

Apparently the spirals reinforce each other. 
This causes the cyst in plate 5 to remain present: 
the remaining spirals constantly induce the refor- 
mation of the “killed” single spiral. At any time, 
therefore, the parasite region is in contact with 
all species of the hypercycle; there is always cat- 
alytic support for the parasite. The phenomenon 
is restricted to single spirals; a double spiral is 
not reinforced. 

We conclude that the stability against the para- 
site in this hypercycle system is a counter-exam- 
ple of the conclusions of the ODE hypercycle 
model [l, 71. In the worst case the parasite can 
destroy one spiral and remain present as a cyst. 

3.4. Diffusion 

What happens to the self-structuring properties 
of the hypercycle when the medium is mixed 
more thoroughly? One might expect the spiral 
pattern to become unstable at higher rates of 

diffusion, for diffusion is an undirected force of 
dispersal. 

However, the effect of a higher rate of diffu- 
sion proves to be quite the reverse. Plate 7A 
shows the situation after 2000 time steps of a 
hypercycle consisting of 6 members, with two 
diffusion steps after every time step. Plate 7B 
shows the situation after 500 time steps of the 
same hypercycle without any diffusion and plate 
7C shows the situation after 500 time steps with 
as many as 16 diffusion steps after every time 
step. The main effect of increased diffusion is 
that the spiral pattern enlarges dramatically. 
Without diffusion the catalytic waves are thin; 
with diffusion they become thicker and thus more 
effective in eliminating molecules that receive no 
catalysis. This means that parasites are removed 
more easily when there is diffusion; e.g. the para- 
site in plates 3A-3C is fatal when there is no 
diffusion. 

Intuitively one might suspect that for high rates 
of diffusion things must muck up, because an 
infinite diffusion rate means complete mixing and 
therefore the differential equations results should 
hold, i.e. the hypercycle should be vulnerable to 
parasites. The results, however, indicate that for 
increasing rates of diffusion the spirals become 
bigger and bigger (if the space is large enough) 
and more stable against parasites. This result 
surely holds up to 32 diffusion steps after every 
time step; we did not investigate higher rates of 
diffusion because in that case the spirals become 
too big for our cellular automaton. 

4. Conclusion and discussion 

4.1. Molecules with a hypercyclic interaction show 
spatial self-structuring. The existence of a spiral 
wave structure causes a hypercycle to be resistant to 
parasites. 

The spiral wave is a well known pattern in 
excitable media which has been studied most 
thoroughly with respect to the Belousov- 
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Zhabotinskii reaction, both experimentally and 
theoretically (e.g. refs. [8, 91). Most theoretical 
models are formulated in terms of partial differ- 
ential equations (c.f. ref. [lo]); spiral wave solu- 
tions are found in cellular automata models as 
well ([4, 11-131). Spiral waves have been shown to 
play a role in cell to cell communication in Dic- 
tyostelium discoideum (e.g. ref. [14]) and in 
neuro-muscular tissue (e.g. ref. [151X Our analysis 
suggests a role for spiral waves in the enabling of 
evolution of co-operation. 

We tested our model extensively for robustness 
of the self-structuring property. It turns out that 
the precise definition of the cellular automaton 
does not affect the development of the spirals. 
We examined for instance asynchronous updating 
of the cells, a non-toroidal field and other neigh- 
bour cells that can give catalytic support. Further- 
more, the individual molecule species in the 
hypercycle can (to some extent) differ in their 
parameters. The number of species in the hyper- 
cycle does affect the formation of spiral waves; it 
appears that for the given parameters the hyper- 
cycle needs to consist of at least five members, 
otherwise no stable spirals are formed. For hy- 
percycles of four or less members the resistance 
against any parasite is lost. The parameter depen- 
dence of spiral development and resistance to 
parasites is an intricate matter, which exhibits a 
wide variety of ordered, chaotic and complex 
behaviour. We will report on this in a future 
paper [161. 

Anyhow the existence of a spiral pattern causes 
a hypercycle to be resistant to a large class of 
parasites. A parasite is only fatal to a hypercycle 
if it is able to grow towards the middle of a spiral. 
This is a difficult task, for it is against the direc- 
tion of growth within the spiral; the parasite gets 
hardly any catalytic support in this direction and 
has to compete with the passing catalytic waves. 
It is not an impossible task; in order to be fatal a 
parasite should for instance have a low decay 
parameter (much lower than the species in the 
hypercycle; in plate 1C decay[parasite] 6 0.1) or it 
should get catalysis from more than one member 

of the hypercycle. The properties of all members 
of the hypercycle are of importance for the out- 
come of the competition. This is in sharp contrast 
with the ODE model [l] where the parasite com- 
petes with only a single member of the hypercycle 
(i.e. species 3 in fig. 4). 

A parasite that is unable to grow towards the 
middle of a spiral cannot destroy a hypercycle. 
The greatest harm such a parasite can do is to 
invade in the middle of a single spiral and remain 
present as a cyst. In a spiral pattern that consists 
only of double spirals the parasite is always wiped 
out. 

4.2. Resistance to parasites implies positive selection 
for a strong altruistic property. This contradicts 
generally accepted selection theory and is caused by 
spatial structuring. 

We have shown that in an incompletely mixed 
medium a hypercycle can be resistant to para- 
sites. A “parasitic” mutant that receives in- 
creased catalytic support from a member of the 
hypercycle but does not give catalytic support to 
any molecule is wiped out. This implies that there 
is positive selection for molecules giving catalytic 
support. 

We tested the robustness of this property by 
strengthening the parameters of the parasite. It 
appears that in the situation of plate 1C a para- 
site with a lower decay parameter (table 1: 
decay[parasite] = 0.151, a higher self-replication 
parameter (table 1: selflparasite] = 2) or a higher 
catalytic support parameter (table 1: c[parasite, 21 
= 500) still cannot destroy the hypercycle. In 
addition, a parasite that gives weak catalytic sup- 
port (table 1: c[4, parasite] = 10) is also wiped out. 
We conclude that selection for the giving of cat- 
alytic support is a robust property in this system. 

In generally accepted selection theory (see refs. 
[17, 181) this selection seems impossible, for the 
giving of catalytic support does not raise the 
number of copies of a molecule. In fact giving 
catalytic support is a so-called strong altruistic 
property, for a molecule that receives catalytic 
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support destroys its “benefactor”. This descrip- 
tion of the selection process is on the level of the 
individual molecules. However, in the system we 
described selection on the long run appears to 
take place at the level of the spirals; in competi- 
tion with a parasite the spirals act as integrated 
entities. Because a spiral consists of more than 
one species there appears to be inter-specific 
“group selection” on the individual level, i.e. 

there is selection for “helping” (giving catalytic 
support to) another molecule species. In 4.3 we 
will discuss the specific structure of the spirals 
which causes this phenomenon. 

4.3. The spirals consist of a “breeder” structure. In 
this type of structure, group selection is possible. 

Within a spiral there is a strikingly unequal 
distribution of long-term fitness: the molecules in 
the middle of a spiral generate the offspring of 
the entire spiral whereas the molecules in the 
periphery of a spiral disappear (as shown in plates 
2A-20. Thus the spatial self-structuring 
“creates” a small subclass of molecules which 
dominates reproduction: the breeders. 

Breeders from different spirals are separated 
from each other: each spiral acts as if it were a 
super-organism whose cell wall is formed by the 
molecules in the periphery. This structure per- 
mits group selection, for there is competition at 
the level of the spirals. If the breeders of a spiral 
all possess an altruistic property that increases 
the competition strength of the periphery, then 
this spiral will expand. If there is a non-altruistic 
“cheater” mutant amongst the breeders of a spi- 
ral, then the altruistic property will be lost within 
this spiral. However, the former region of the 
spiral will then be taken over by other spirals that 
are still altruistic. 

The self-structuring origin of the “breeder” 
structure makes it an attractive alternative to 
previous models of group selection (e.g. refs. [19, 
201, and in the context of hypercycles [21]), which 

require behavioural and/or spatial pre-structur- 
ing. 

4.4. Spatial self-structuring can have a major 
impact on the outcome of selection processes. 
Therefore it should be taken into account in the 

study of pre-biotic evolution. 

In this study we have shown that spatial self- 
structuring alters a selection property of hypercy- 
cles, namely their vulnerability to parasites. 
Preliminary results show that other selection 
properties of the hypercycle such as “once-for- 
ever” selection and selection in joint hypercycles 
(see appendix A) also change as a result of the 
spatial self-structuring. We will report on this in a 
future paper. 

Furthermore it seems plausible that the phe- 
nomenon of spatial self-structuring is not re- 
stricted to hypercycles. For instance, in the model 
of Farmer et al. [22] a cyclic catalytic network of 
polymers is formed. This network differs from the 
structure of a hypercycle in that the polymers are 
not self-replicative. However, the interactions in 
this network look very much like the interactions 
in the abovementioned Belousov-Zhabotinskii 
reaction [9], so the spiral structure may well 
emerge in this system too. Whether cyclic interac- 
tion structures are likely to appear and outcom- 
pete other structures in networks with random 
interactions is subject for further study. 

Self-structuring is a well-known feature of cel- 
lular automata. Simple low-level transition rules 
can generate high-level spatial patterns. This 
spontaneous self-structuring has often been inter- 
preted as a form of evolution (e.g. ref. [231). In 
this study we use a different approach; we con- 
sider self-structuring as a substrate for selection 
[24]. The substrate has proved very fertile; an 
environment is created in which inter-specific 
group selection is possible. 

We believe therefore that in the study of (pre- 
biotic) evolution it is important to look for self- 
structuring and examine its consequences. 
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Appendix A. The ODE model of the hypercycle 

In the model n self-replicative molecule species 
are linked cyclically by catalysis (see fig. 3). The 
total number of molecules C is kept constant by 
an output flux 4. Erroneous mutants are not 
included in the model. For analytical prove and 
further discussion see refs. [l, 71. 

A.1. Kinetic steps 

Self-replication: 

Ii 4 21,. 

Decay: 

4 
z,+ . 

Catalysed replication: 

Fig. 3. Schematic diagram of a hypercycle. The hypercycle 

consists of self-replicative molecule species Ii; each species 

provides catalytic support for the subsequent species in the 
cycle. After ref. [l]. 

output flux: 

4 
zi+ . 

A.2. Differential equations 

~i=rr,Xi+kiX,Xi_,-~Xi, ri=bi-di; 

kx,=c, 
i=l 

C being the total number of molecules; 

c$= 2 (riXi+kiXiXi_,) i C. 
i=l ii 

A.3. Summary of dynamical and selectional 
properties 

Stability 
The elementary hypercycle has only one 

attractor. At low dimensions (n I 4) the attractor 
is an asymptotically stable fixed point, namely, a 
focus for n = 2 and a spiral sink for n = 3 and 
n = 4. In systems of higher dimensions (n 2 5) 
“permanence” has been proven, i.e. no molecule 
species vanishes; numerical integration provides 
strong evidence for the existence of a stable limit 
cycle. 

Parasites 
In fig. 4 a hypercycle with a so-called parasite is 

shown. The system appears to be competitive, i.e. 
the hypercycle and the parasite cannot co-exist. If 
the linear terms are neglected, the following 
relation holds: 

if kpar > k,, the parasite wins; the entire hyper- 
cycle becomes extinct; 

if k,,, < k,, the parasite becomes extinct. 

Competition between joint hypercycles 
In fig. 5 two joint hypercycles are shown. The 

two cycles exclude each other (again neglecting 
the linear terms): 

if k, > k,, hypercycle rr will outcompete r,; 
if k, < k,, hypercycle I’, will outcompete rr. 
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kpar 

Fig. 4. Schematic diagram of a hypercycle with a self-repli- 

cative “parasitic” molecule species “par”. The parasite gets 

catalytic support from species I, but does not give catalytic 

support to any molecule species in the hypercycle. After 

ref. [l]. 

0 

Fig. 5. Schematic diagram of two joint hypercycles. After 
ref. [7]. 

Competition between disjoint hypercycles 

Selection of a hypercycle is a “once-forever” 

decision. A hypercycle, once established, cannot 

easily be replaced by any newcomer, since new 

species always emerge as one copy; the growth 

rate of a hypercycle is non-linear and therefore 

dependent of population size. 
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